goda@chem.s.u-tokyo.ac.jp +81-3-5841-4329

Mission

At Goda Lab, our primary mission is to develop "serendipity-enabling technologies" that align with Louis Pasteur's famous quote, "Chance (serendipity) favors the prepared mind." Our focus is on developing innovative tools for molecular imaging and spectroscopy by integrating photonics, nanotechnology, microfluidics, and data science. By utilizing these tools, we aim to discover unknown phenomena, elucidate mechanisms, and explore new applications in science, industry, and medicine. We employ theoretical, experimental, and computational techniques to tackle critical problems. Additionally, we are committed to cultivating the next generation of global leaders who will shape the world in the 21st century. We foster an international and interdisciplinary research environment that values flat human relationships, and we actively seek out talented individuals from any university or company, regardless of their field of study.

What is serendipity?

Serendipity is an unplanned fortunate discovery and is a common occurrence throughout the history of scientific discovery.

Serendipity Lab

Serendipity Lab is a global network of scientists who develop serendipity-enabling technologies to revolutionize biology and medicine.

Journal Publications

Startups

Faculty Members

Awards

Keisuke Goda

Scientist, Engineer, Educator, & Entrepreneur

Keisuke Goda is currently a professor in the Department of Chemistry at the University of Tokyo, as well as an adjunct professor in the Department of Bioengineering at UCLA and the Institute of Technological Sciences at Wuhan University. He earned a B.A. degree summa cum laude in Physics from UC Berkeley in 2001 and a Ph.D. in Physics from MIT in 2007. While at MIT, he contributed to the development of quantum-enhancement techniques in the LIGO group, which received the 2017 Nobel Prize in physics for the detection of gravitational waves. In 2007, he joined the Department of Electrical Engineering at UCLA as a postdoctoral researcher and program manager, where he focused on laser-based ultrafast optical imaging and spectroscopy, as well as microfluidic biotechnology. In 2012, Goda joined the Department of Chemistry at the University of Tokyo as a professor. His research group is currently dedicated to developing "serendipity-enabling technologies" through extreme engineering. He has authored nearly 300 journal papers, filed over 30 patents, and launched four startups: CYBO, Cupido, LucasLand, and FlyWorks. Goda has received more than 30 awards and honors, including the Japan Academy Medal, JSPS Prize, SPIE Biophotonics Technology Innovator Award, and Philipp Franz von Siebold Award.

Read More

To see his biography, award list, publication record, etc.

Research

Our research group is dedicated to developing serendipity-enabling technologies through the integration of photonics, nanotechnology, microfluidics, and data science. Our goal is to use these technologies to discover unknown biological phenomena, elucidate mechanisms, and exploit a new class of biomedical applications. Although our research is rooted in physics and chemistry, we make use of theoretical, experimental, and computational techniques to tackle important problems. We operate our global initiative for the development of serendipity-enabling technologies at Serendipity Lab. Below is a non-exhaustive list of our current research programs.

Image-activated cell sorting

High-throughput image-based sorting of live cells and its application to biology and medicine

Quantum bioengineering

Studying quantum effects in biological systems and developing quantum bio-inspired technologies

Coherent Raman spectroscopy

Developing novel coherent Raman spectroscopy methods (CARS, SRS) and applications

Intelligent platelet morphometry

Studying the morphology of platelet aggregates using artificial intelligence and its medical utility

Exosome-based liquid biopsy

Developing a new approach to liquid biopsy based on cancer-related exosome detection

Wearable spectroscopy

Developing devices and applications for wearable spectroscopy

Drosophila-based drug discovery

Developing a fast, accurate, low-cost drug screening platform based on Drosophila flies

Raman flow cytometry

Label-free flow cytometry based on coherent Raman spectroscopy for microbiology and food science

Large-droplet biomicrofluidics

Single-cell biology by encapsulating cells into large droplets, sorting, and watching them

Time-stretch technology

Developing optical time-stretch spectroscopy and imaging methods and exploiting their applications

Crazy projects

Coming up with crazy ideas and testing them experimentally to potentially bring them to life

Invention-based entrepreneurship

Encouraging students and postdocs to launch startups based on their technological inventions

Members

Goda Lab comprises a team of highly motivated and talented individuals, including junior faculty, postdoctoral researchers, graduate and undergraduate students, research and technical assistants, administrative staff, visiting researchers, and interns. We welcome ambitious individuals from any university in any country who are passionate about scientific exploration and eager to make a significant impact on the world. If you are interested in joining Goda Lab, please go to this section.

Yasutaka Kitahama

Research Associate Professor

Hiroyuki Matsumura

Research Associate Professor

Tianben Ding

Assistant Professor

Yuqi (Iris) Zhou

Assistant Professor

Jorgen Walker (Wataru) Peterson

Research Assistant Professor

Fabio Lisi

Research Assistant Professor

Hiroshi Kanno

Research Assistant Professor

Yuta (Yoda) Nakagawa

JSPS Research Fellow

Ryo (Ryan) Nishiyama

Postdoctoral Researcher

Naoko Kawai

Administrative Assistant

Michiko Ushijima

Administrative Assistant

Nozomi Naito

Administrative Assistant

Tadataka Ota

Technical Assistant

Mayu Sehara

Technical Assistant

Xuke (Cohen) Tang

Ph.D. Student

Mika Hayashi

Ph.D. Student

Chenqi (Nana) Zhang

Ph.D. Student

Ryuji (Romeo) Nakao

Ph.D. Student

Natsumi (Tiffany) Ishii

Ph.D. Student

Yuhong (Yuki) Liu

Ph.D. Student

Junyu (Junichi) Chen

Ph.D. Student

Yunjie (Jacey) Deng

Ph.D. Student

Junyu (Jo) Dong

Ph.D. Student

Yaqi (Nagiko) Zhao

Ph.D. Student

Hongqian (Sophy) Zhang

Ph.D. Student

Huidong (Hayato) Wang

Ph.D. Student

Yingdong (Yohei) Luo

Ph.D. Student

Fan (Fuyuki) Li

Ph.D. Student

Jun (John) Akita

Ph.D. Student

Tsubasa (Todd) Kobayashi

Ph.D. Student

Hanqing (Ryota) Wang

M.S. Student

Chuiming (Aaron) Kong

M.S. Student

Yuzuki (Emma) Nagasaka

M.S. Student

Kei (Kevin) Furuya

M.S. Student

Yusuke (Samuel) Sekine

M.S. Student

Omer Faruk Bicer

M.S. Student

Kiminari Oh

M.S. Student

Naoki Matsuoka

M.S. Student

Yumeng (Yumi) Jiang

M.S. Student

Yugo Takada

M.S. Student

Chenglang (Chase) Hu

Research Student

Yawen (Yui) Zhang

Research Student

Hongwei Guo

Visiting Scholar

Huai-Song (Hideo) Wang

Visiting Scholar

Zhenzhou Cheng

Visiting Scholar

Cheng Lei

Visiting Scholar

Tinghui (Tim) Xiao

Visiting Scholar

Qian (Kenshin) Yu

Visiting Scholar

Haijiao Nan

Visiting Scholar

Publications

Goda Lab has created cutting-edge technologies that facilitate scientific breakthroughs in a variety of fields, including science, industry, and medicine. Below are some select journal papers that have recently been published by Goda Lab. A complete list of Goda Lab's publications (including Prof. Goda's old publications before joining the University of Tokyo) is available here and below.

Intelligent image-activated cell sorting

Data-driven analysis of thrombosis

Reinforced graphene oxide bulk material

Metal-free SERS

How to report throughput

Raman image-activated cell sorting

High-throughput droplet microfluidics

Virtual-freezing fluorescence imaging

Enhanced Raman optical activity

A guide to image-activated cell sorting

FT-CARS flow cytometry

SRS imaging flow cytometry

A guide to optofluidic cytometry

Interplay of plasmonic hot electrons

SRS imaging of Euglena gracilis

Ultrafast burst camera

Optical time-stretch spectroscopy

1.     A. Matsumoto, Y. Toyoshima, C. Zhang, A. Isozaki, K. Goda, and Y. Iino, “Neuronal sensorimotor integration guiding salt concentration navigation in Caenorhabditis elegans”, PNAS (2023) in press

2.     R. Nishiyama, K. Furuya, K. Hiramatsu, and K. Goda, “ラマン分光フローサイトメトリー”, 生物物理 (2023) in press

3.     K. Hiramatsu, S. Takizawa, S. Ono, and K. Goda, “ラマンイメージング x 圧縮センシング”, 分光研究 (2023) in press

4.     V. K. Rao, X. Tang, Y. Sekine, M. Egawa, P. K. Dwivedi, Y. Kitahama, and K. Goda, “An ultralow-cost, durable, flexible substrate for ultrabroadband surface-enhanced Raman spectroscopy”, Advanced Photonics Research 2300291 (2023)

5.     Y. Kitahama and K. Goda, “Wearable SERS sensor for in situ detection of biomolecules”, Photonics News 9, 78 (2023)

6.     H. Duan, S.-Y. Tang, K. Goda, and M. Li, “Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by MXene/AuNP nanocomposites for continuous monitoring of biomarkers”, Biosensors and Bioelectronics 246, 115918 (2023)

7.     Y. Kitahama, P. M. Pancorbo, W. Yang, T. H. Xiao, and K. Goda, “Sampling-free substrate for Place & Play SERS”, Optics & Photonics News 34 (2023)

8.     X. Tang, N. Kishimoto, Y. Kitahama, T.-T. You, M. Adachi, Y. Shigeta, S. Tanaka, T. Xiao, and K. Goda, “Deciphering the potential of multidimensional carbon materials for surface-enhanced Raman spectroscopy through density functional theory”, Journal of Physical Chemistry Letters 14, 10208 (2023)

9.     Y. Tanaka, M. Yamagishi, Y. Motomura, T. Kamatani, Y. Oguchi, N. Suzuki, T. Kiniwa, H. Kabata, T. Tsunoda, F. Miya, K. Goda, O. Ohara, T. Funatsu, K. Fukunaga, K. Moro, S. Uemura, and Y. Shirasaki, “Time-dependent cell-state selection identifies transiently expressed genes regulating ILC2 activation”, Communications Biology 6, 915 (2023)

10.  R. Nishiyama, K. Hiramatsu, S. Kawamura, K. Dodo, K. Furuya, J. Gala de Pablo, S. Takizawa, W. Min, M. Sodeoka, and K. Goda, “Color-scalable flow cytometry with Raman tags”, PNAS Nexus 2, 1 (2023)

11.  R. Li, Y. Weng, S. Lin, C. Wei, L. Mei, S. Wei, Y. Yao, D. Wang, K. Goda, and C. Lei, “All-optical Fourier-domain-compassed time-stretch imaging with low-pass filtering”, ACS Photonics doi.org/10.1021/acsphotonics.2c01708 (2023)

12.  R. Nishiyama, K. Furuya, P. McCann, L. Kacenauskaite, B. Laursen, A. H. Flood, K. Hiramatsu, and K. Goda, “Boosting the brightness of Raman tags with cyanostar macrocycles”, Analytical Chemistry 95, 12835 (2023)

13.  H. Matsumura, L. T-W Shen, A. Isozaki, H. Mikami, D. Yuan, T. Miura, N. Nitta, Y. Kondo, T. Mori, Y. Kusumoto, M. Nishikawa, A. Yasumoto, M. Sonoshita, Y. Yatomi, K. Goda, and S. Matsusaka, “Virtual-freezing fluorescence imaging flow cytometry with 5-aminolevulinic acid stimulation and antibody labeling for detecting all forms of circulating tumor cells”, Lab on a Chip 23, 1561 (2023)

14.  M. Hayashi, S. Ohnuki, Y. Tsai, N. Kondo, Y. Zhou, H. Zhang, N. Ishii, T. Ding, M. Herbig, A. Isozaki, Y. Ohya, and K. Goda, “Is AI essential? Examining the need for deep learning in image-activated sorting of Saccharomyces cerevisiae”, Lab on a Chip 23, 4232 (2022)

15.  K. Goda, H. Lu, P. Fei, and J. Guck, “Revolutionizing microfluidics with artificial intelligence: A new dawn for lab-on-a-chip technologies”, Lab on a Chip 23, 3737 (2023)

16.  Y. Weng, H. Shen, L. Mei, L. Liu, Y. Yao, R. Li, S. Wei, X. Ruan, D. Wang, Y. Wei, Y. Deng, Y. Zhou, T. Xiao, K. Goda, S. Liu, F. Zhou, and C. Lei, “Typing of acute leukemia by intelligent optical time-stretch imaging flow cytometry”, Lab on a Chip 23, 1703 (2023)

17.  Y. Kitahama, P. M. Pancorbo, H. Segawa, M. Marumi, T. Xiao, K. Hiramatsu, W. Yang, and K. Goda, “Place & Play SERS: sample collection and preparation-free surface-enhanced Raman spectroscopy”, Analytical Methods 15, 1028 (2023)

18.  T. Xiao, Y. Zhou, and K. Goda, “Unlocking the secrets of the invisible world: Incredible deep optical imaging through in-silico clearing”, Light: Science & Applications 12, 161 (2023)

19.  W. Peterson, K. Hiramatsu, and K. Goda, “The marriage of coherent Raman scattering imaging and advanced computational tools”, Light: Science & Applications 12, 113 (2023)

20.  C. Zhang, M. Herbig, Y. Zhou, M. Nishikawa, M. Shifat-E-Rabbi, H. Kanno, R. Yang, Y. Ibayashi, T. Xiao, G. K. Rohde, M. Sato, S. Kodera, M. Daimon, Y. Yatomi, and K. Goda, “Real-time intelligent classification of COVID-19 and thrombosis via massive image-based analysis of platelet aggregates”, Cytometry Part A 103, 492 (2023)

21.  R. Kinegawa, J. Gala de Pablo, Y. Wang, K. Hiramatsu, and K. Goda, “Label-free multiphoton imaging flow cytometry”, Cytometry Part A 103, 584 (2023)

22.  J. Gala de Pablo, M. Lindley, K. Hiramatsu, A. Isozaki, and K. Goda, “Label-free live microalgal starch screening via Raman flow cytometry”, Algal Research 70, 102993 (2023)

23.  H. Duan, Y. Wang, S. Tang, T. Xiao, K. Goda, and M. Li, “A CRISPR-Cas12a powered electrochemical sensor based on gold nanoparticles and MXene composite for enhanced nucleic acid detection”, Sensors and Actuators B: Chemical 380, 133342 (2023)

24.  S. Takizawa, K. Hiramatsu, M. Lindley, J. Gala de Pablo, S. Ono, and K. Goda, “High-speed hyperspectral imaging enabled by compressed sensing in time domain”, Advanced Photonics Nexus 2, 026008 (2023)

25.  K. Goda, “バイオフォトニクスの成長は爆発的”, Optronics 42,122 (2023)

26.  K. Goda, “量子生命科学”, 臨床精神薬理 26, 1003 (2023)

12.       K. Chen, X. Tang, B. Jia, C. Chao, J. Hou, L. Dong, Y. Wei, T. Xiao, K. Goda, and L. Guo, “Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking”, Nature Materials 21, 1121 (2022)

13.       M. Herbig, A. Isozaki, D. Di Carlo, J. Guck, N. Nitta, H. Shintaku, A. Wu, I. Nikaido, S. Kamikawaji, E. Suyama, R. Damoiseaux, and K. Goda, “Best practices for reporting throughput in biomedical research”, Nature Methods 19, 633 (2022)

14.       W. Peterson, J. Gala de Pablo, M. Lindley, K. Hiramatsu, and K. Goda, “Ultrafast impulsive Raman spectroscopy across the THz-fingerprint region”, Advanced Photonics 4, 016003 (2022)

15.       L. Liu, P. M. Pancorbo, T. Xiao, S. Noguchi, M. Marumi, H. Segawa, S. Karhadkar, J. Gala de Pablo, K. Hiramatsu, Y. Kitahama, T. Itoh, J. Qu, K. Takei, and K. Goda, “Highly scalable, wearable surface-enhanced Raman spectroscopy”, Advanced Optical Materials 10, 2200054 (2022)

16.       K. Hiramatsu, T. Tajima, and K. Goda, “Ultrafast, dual-band coherent Raman spectroscopy without ultrashort pulses”, ACS Photonics 9, 3522 (2022)

17.       M. Lindley, J. Gala de Pablo, W. Peterson, A. Isozaki, K. Hiramatsu, K. Goda, “High-throughput Raman-activated cell sorting in the fingerprint region”, Advanced Materials Technologies 7, 2102567 (2022)

18.       Y. Deng, H. M. Tay, Y. Zhou, X. Fei, X. Tang, M. Nishikawa, Y. Yatomi, H. W. Hou, T. Xiao, and K. Goda, “Studying the efficacy of antiplatelet drugs on atherosclerosis by optofluidic imaging on a chip”, Lab on a Chip 23, 410 (2022)

19.       K. Huang, H. Matsumura, Y. Zhao, M. Herbig, D. Yuan, Y. Mineharu, J. Harmon, J. Findinier, M. Yamagishi, S. Ohnuki, N. Nitta, A. Grossman, Y. Ohya, H. Mikami, A. Isozaki, and K. Goda, “Deep imaging flow cytometry”, Lab on a Chip 22, 876 (2022)

20.       Y. Deng, J. A. Duque, C. Su, Y. Zhou, M. Nishikawa, T. Xiao, Y. Yatomi, H. W. Hou, and K. Goda, “Understanding stenosis-induced platelet aggregation on a chip by high-speed optical imaging”, Sensors and Actuators B: Chemical 356, 131318 (2022)

21.       Y. Zhao, A. Isozaki, M. Herbig, M. Hayashi, K. Hiramatsu, S. Yamazaki, N. Kondo, S. Ohnuki, Y. Ohya, N. Nitta, and K. Goda, “Intelligent sort-timing prediction for image-activated cell sorting”, Cytometry Part A 103, 88 (2022)

22.       Y. Zhou, M. Nishikawa, H. Kanno, R. Yang, Y. Ibayashi, T. Xiao, W. Peterson, N. Nitta, S. Miyata, Y. Kanthi, G. K. Rohde, K. Moriya, Y. Yatomi, and K. Goda, “Long-term effects of Pfizer-BioNTech COVID-19 vaccinations on platelets”, Cytometry Part A 103, 162 (2022)

23.       J. Harmon, J. Findinier, N. T. Ishii, M. Herbig, A. Isozaki, A. Grossman, and K. Goda, “Intelligent image-activated cell sorting by mitochondrial relocation”, Cytometry Part A 101, 1027 (2022)

24.       P. M. Pancorbo, H. Zhang, X. Yu, T. Xiao, and K. Goda, “Metal-free SERS: where we are now, where we are heading”, Europhysics Letters 136, 34001 (2022)

25.       D. Wang, X. Yuang, Y. Weng, S. Wei, K. Goda, S. Liu, and C. Lei, “Ultrafast imaging for uncovering laser-material interaction dynamics”, International Journal of Mechanical System Dynamics 2, 65 (2022)

26.       Y. Zhou, H. Kanno, M. Nishikawa, T. Xiao, K. Moriya, Y. Yatomi, and K. Goda, “Analysis of platelet aggregation by optofluidic imaging”, Journal of the Imaging Society of Japan 61, 588 (2022)

27.       H. Kanno, M. Nishikawa, Y. Zhou, T. Xiao, T. Suzuki, Y. Ibayashi, J. Harmon, S. Takizawa, K. Hiramatsu, N. Nitta, R. Kameyama, W. Peterson, J. Takiguchi, M. Shifat-E-Rabbi, Y. Zhuang, X. Yin, A. H. M. Rubaiyat, Y. Deng, H. Zhang, S. Miyata, G. K. Rohde, W. Iwasaki, Y. Yatomi, and K. Goda, “Analyzing circulating platelet aggregates in patients with COVID-19 by massive image-based single-cell profiling”, 化学とマイクロ・ナノシステム学会誌 21, 1 (2022)

28.       K. Goda, “計画的セレンディピティが医学・創薬を革新する!”, 医学のあゆみ 282, 23252 (2022)

29.       K. Hiramatsu and K. Goda, “先端光技術で藻類バイオスクリーニング”, 遺伝 76, 450 (2022)

30.       M. Nishikawa, H. Kanno, Y. Zhou, T. Xiao, T. Suzuki, Y. Ibayashi, J. Harmon, S. Takizawa, K. Hiramatsu, N. Nitta, R. Kameyama, W. Peterson, J. Takiguchi, M. Shifat-E-Rabbi, Y. Zhuang, X. Yin, A. H. M. Rubaiyat, Y. Deng, H. Zhang, S. Miyata, G. K. Rohde, W. Iwasaki, Y. Yatomi, and K. Goda, “Massive image-based single-cell profiling reveals high levels of circulating platelet aggregates in patients with COVID-19”, Nature Communications 12, 7135 (2021)

31.       H. Koide, A. Okishima, Y. Hoshino, Y. Kamon, K. Yoshimatsu, K. Saito, I. Yamauchi, S. Ariizumi, Y. Zhou, T. Xiao, K. Goda, N. Oku, T. Asai, and K. J. Shea, “Synthetic hydrogel nanoparticles for sepsis therapy”, Nature Communications 12, 5552 (2021)

32.       T. Xiao, Z. Cheng, Z. Luo, A. Isozaki, K. Hiramatsu, T. Itoh, M. Nomura, S. Iwamoto, and K. Goda, “All-dielectric chiral-field-enhanced Raman optical activity”, Nature Communications 12, 3062 (2021)

33.       J. Gala de Pablo, M. Lindley, K. Hiramatsu, and K. Goda, “High-throughput Raman flow cytometry and beyond”, Accounts of Chemical Research 54, 2132 (2021)

34.       P. Cheng, X. Tian, W. Tang, J. Cheng, J. Bao, H. Wang, S. Zheng, Y. Wang, X. Wei, T. Chen, H. Feng, T. Xue, K. Goda, and H. He, “Direct control of store-operated calcium channels by ultrafast laser”, Cell Research 31, 758 (2021)

35.       Y. Zhou, A. Isozaki, A. Yasumoto, T. Xiao, Y. Yatomi, C. Lei, and K. Goda, “Intelligent platelet morphometry”, Trends in Biotechnology 39, 978 (2021)

36.       K. C. M. Lee, J. Guck, K. Goda, and K. K. Tsia, “Deep biophysical cytometry: prospects and challenges”, Trends in Biotechnology 39, 1249 (2021)

37.       R. Kameyama, S. Takizawa, K. Hiramatsu, and K. Goda, “Dual-comb coherent Raman spectroscopy with near 100% duty cycle”, ACS Photonics 8, 975 (2021)

38.       M. Xu, D. Yuan, S. Yan, C. Lei, K. Hiramatsu, J. Harmon, Y. Zhou, M. H. Loo, T. Hasunuma, A. Isozaki, and K. Goda, “Morphological indicator of Euglena gracilis with a high heavy metal removal efficiency”, Environmental Science and Technology 55, 7880 (2021)

39.       P. C. McCann, K. Hiramatsu, and K. Goda, “Highly sensitive low-frequency time-domain Raman spectroscopy via fluorescence-encoding”, Journal of Physical Chemistry Letters 12, 7859 (2021)

40.       Y. Nakagawa, S. Ohnuki, N. Kondo, K. Itto, F. Ghanegolmohammadi, A. Isozaki, Y. Ohya, and K. Goda, “Are droplets really suitable for single-cell analysis? A case study on yeast in droplets”, Lab on a Chip 21, 3793 (2021)

41.       R. Bekdash, J. R. Quejada, S. Ueno, F. Kawano, K. Morikawa, U. Mahesh, R. Avula, E. Wan, S. L. Lee, K. Nakanishi, A. Chalan, T. Lee, R. Liu, S. Homma, S. O. Marx, K. Goda, and M. Yazawa, “GEM-IL: a highly responsive fluorescent lactate indicator”, Cell Reports Methods 1, 100092 (2021)

42.       M. H. Loo, Y. Nakagawa, A. Isozaki, and K. Goda, “High-throughput sorting of nanoliter droplets enabled by a sequentially addressable dielectrophoretic array”, Electrophoresis 43, 477 (2021)

43.       M. Lindley, J. Gala de Pablo, R. Kinegawa, K. Hiramatsu, and K. Goda, “Highly sensitive Fourier-transform coherent anti-Stokes Raman scattering spectroscopy via genetic algorithm pulse shaping”, Optics Letters 46, 4320 (2021)

44.       A. Isozaki, D. Huang, Y. Nakagawa, and K. Goda, “Dual sequentially addressable dielectrophoretic array for high-throughput, scalable, multiplexed droplet sorting”, Microfluidics and Nanofluidics 25, 32 (2021)

45.       M. Li, H. Liu, S. Zhuang, and K. Goda, “Droplet flow cytometry for single-cell analysis”, RSC Advances 11, 20944 (2021)

46.       J. P. Houston, K. Goda, and A. Filby, “CYTO Virtual”, Cytometry Part A 99, 127 (2021)

47.       K. Goda, “科学の成長モデルの変化と今後の展望”, 光学 50, 216 (2021)

48.       A. Isozaki, N. Nitta, T. Sugimura, and K. Goda, “画像活性セルソーター:画像情報に基づく生きた細胞の高速分取法”, 実験医学増刊 39, 198 (2021)

49.       Y. Zhou, H. Kanno, T. Xiao, R. Shakhmatov, Y. Ibayashi, M. Nishikawa, Y. Yatomi, and K. Goda, “COVID-19の診断補助に向けたタイムストレッチ・イメージング”, レーザー研究 49, 228 (2021)

50.       K. Hiramatsu and K. Goda, “バイオイメージング極秘ファイル:展望”, Optronics 12 (2021)

51.       K. Goda, T. Itoh, and T. Xiao, “多孔性炭素ナノワイヤを用いた金属フリーの表面増強ラマン分光法”, 光技術動向調査報告書 (2021)

52.       K. Tsia and K. Goda, “High-speed biomedical imaging and spectroscopy VI”, SPIE Proceedings 11654 (2021)

53.       N. Chen, T. Xiao, Z. Luo, Y. Kitahama, K. Hiramatsu, N. Kishimoto, T. Ito, Z. Cheng, and K. Goda, “Porous carbon nanowire array for surface-enhanced Raman spectroscopy”, Nature Communications 11, 4772 (2020)

54.       N. Nitta, T. Iino, A. Isozaki, M. Yamagishi, Y. Kitahama, S. Sakuma, Y. Suzuki, H. Tezuka, M. Oikawa, F. Arai, T. Asai, D. Deng, H. Fukuzawa, M. Hase, T. Hasunuma, T. Hayakawa, K. Hiraki, K. Hiramatsu, Y. Hoshino, M. Inaba, Y. Inoue, T. Ito, M. Kajikawa, H. Karakawa, Y. Kasai, Y. Kato, H. Kobayashi, C. Lei, S. Matsusaka, H. Mikami, A. Nakagawa, K. Numata, T. Ota, T. Sekiya, K. Shiba, Y. Shirasaki, N. Suzuki, S. Tanaka, S. Ueno, H. Watarai, T. Yamano, M. Yazawa, Y. Yonamine, D. Di Carlo, Y. Hosokawa, S. Uemura, T. Sugimura, Y. Ozeki, and K. Goda, “Raman image-activated cell sorting”, Nature Communications 11, 3452 (2020)

55.       H. Mikami, M. Kawaguchi, C.-J. Huang, H. Matsumura, T. Sugimura, K. Huang, C. Lei, S. Ueno, T. Miura, T. Ito, K. Nagasawa, T. Maeno, H. Watarai, M. Yamagishi, S. Uemura, S. Ohnuki, Y. Ohya, H. Kurokawa, S. Matsusaka, C.-W. Sun, Y. Ozeki, and K. Goda, “Virtual-freezing fluorescence imaging flow cytometry”, Nature Communications 11, 1162 (2020)

56.       A. Isozaki, Y. Shibata, N. Tanaka, D. L. Setyaningrum, Y. Nakagawa, M. H. Loo, J. Park, Y. Shirasaki, D. Huang, C. Riche, H. Tsoi, T. Ota, H. Miwa, Y. Kanda, T. Ito, K. Yamada, O. Iwata, K. Suzuki, Y. Kato, T. Hasunuma, S. Matsusaka, M. Yamagishi, M. Yazawa, S. Uemura, K. Nagasawa, H. Watarai, D. Di Carlo, and K. Goda, “Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments”, Science Advances 6, eaba6712 (2020)

57.       Y. Zhou, A. Yasumoto, C. Lei, C.-J. Huang, H. Kobayashi, Y. Wu, S. Yan, C.-W. Sun, Y. Yatomi, and K. Goda, “Intelligent classification of platelet aggregates by agonist type”, eLife 9, e52938 (2020)

58.       A. Isozaki, J. Harmon, Y. Zhou, S. Li, Y. Nakagawa, M. Hayashi, H. Mikami, C. Lei, and K. Goda, “AI on a chip”, Lab on a Chip 20, 3074 (2020)

59.       A. Isozaki, H. Mikami, H. Tezuka, H. Matsumura, K. Huang, M. Akamine, K. Hiramatsu, T. Iino, T. Ito, H. Karakawa, Y. Kasai, Y. Li, Y. Nakagawa, S. Ohnuki, T. Ota, Y. Qian, S. Sakuma, T. Sekiya, Y. Shirasaki, N. Suzuki, E. Tayyabi, T. Wakamiya, M. Xu, M. Yamagishi, H. Yan, Q. Yu, S. Yan, D. Yuan, W. Zhang, Y. Zhao, F. Arai, R. E. Campbell, C. Danelon, D. Di Carlo, K. Hiraki, Y. Hoshino, Y. Hosokawa, M. Inaba, A. Nakagawa, Y. Ohya, M. Oikawa, S. Uemura, Y. Ozeki, T. Sugimura, N. Nitta, and K. Goda, “Intelligent image-activated cell sorting 2.0”, Lab on a Chip 20, 2263 (2020)

60.       H. Yan, Y. Wu, Y. Zhou, M. Xu, P. Paie, C. Lei, S. Yan, and K. Goda, “Virtual optofluidic time-stretch quantitative phase imaging”, APL Photonics 5, 046103 (2020)

61.       K. Goda, B. Jalali, C. Lei G. Situ, and P. Westbrook, “AI boosts photonics and vice versa”, APL Photonics 5, 070401 (2020)

62.       K. Goda, G. Popescu, K. Tsia, D. Psaltis, “Computational optical imaging goes viral”, APL Photonics 5, 030401 (2020)

63.       K. Hiramatsu, K. Yamada, M. Lindley, K. Suzuki, and K. Goda, “Large-scale label-free single-cell analysis of paramylon in Euglena gracilis by high-throughput broadband Raman flow cytometry”, Biomedical Optics Express 11, 1752 (2020)

64.       S. Takizawa, K. Hiramatsu, and K. Goda, “Compressed time-domain coherent Raman spectroscopy with real-time random sampling”, Vibrational Spectroscopy 107, 103042 (2020)

65.       H. Kanno, H. Mikami, and K. Goda, “High-speed single-pixel imaging by frequency-time-division multiplexing”, Optics Letters 45, 2339 (2020)

66.       Y. Weng, G. Wu, L. Mei, Q. Wang, K. Goda, S. Liu, and C. Lei, “Temporally interleaved optical time-stretch imaging”, Optics Letters 45, 2387 (2020)

67.       Y. Wu, Y. Zhou, C.-J. Huang, H. Kobayashi, S. Yan, Y. Ozeki, Y. Wu, C.-W. Sun, A. Yasumoto, Y. Yatomi, C. Lei, and K. Goda, “Intelligent frequency-shifted optofluidic time-stretch quantitative phase imaging”, Optics Express 28, 519 (2020)

68.       T. Saiki, T. Hosobata, Y. Kono, M. Takeda, A. Ishijima, M. Tamamitsu, Y. Kitagawa, K. Goda, S. Morita, S. Ozaki, K. Motohara, Y. Yamagata, K. Nakagawa, and I. Sakuma, “Sequentially timed all-optical mapping photography boosted by a branched 4f system with a slicing mirror”, Optics Express 28, 31914 (2020)

69.       Y. Weng, L. Mei, G. Wu, S. Chen, B. Zhan, K. Goda, S. Liu, and C. Lei, “Analysis of signal detection configurations in optical time-stretch imaging”, Optics Express 28, 29272 (2020)

70.       Y. Yonamine, K. Hiramatsu, T. Ideguchi, T. Ito, T. Fujiwara, Y. Miura, K. Goda, and Y. Hoshino, “Spatiotemporal monitoring of intracellular metabolic dynamics by resonance Raman microscopy with stable isotope labeling”, RSC Advances 10, 16679 (2020)

71.       J. Harmon, H. Mikami, H. Kanno, T. Ito, and K. Goda, “Accurate classification of microalgae by intelligent frequency-division-multiplexed fluorescence imaging flow cytometry”, OSA Continuum 3, 430 (2020)

72.       K. Goda, “Quantum light and quantum life: understanding quantum-biological phenomena by quantum technology”, Optronics 8, 54 (2020)

73.       A. Nakagawa, N. Nitta, T. Sugimura, A. Isozaki, Y. Ozeki, and K. Goda, “インテリジェント画像活性細胞選抜法 医療・生命科学分野への展開”, 医学のあゆみ 273, 20524 (2020)

74.       K. Tsia and K. Goda, “High-speed biomedical imaging and spectroscopy V”, SPIE Proceedings 11250 (2020)

75.       A. Isozaki, H. Mikami, K. Hiramatsu, S. Sakuma, Y. Kasai, T. Iino, T. Yamano, A. Yasumoto, Y. Oguchi, N. Suzuki, Y. Shirasaki, T. Endo, T. Ito, K. Hiraki, M. Yamada, S. Matsusaka, T. Hayakawa, H. Fukuzawa, Y. Yatomi, F. Arai, D. Di Carlo, A. Nakagawa, Y. Hoshino, Y. Hosokawa, S. Uemura, T. Sugimura, Y. Ozeki, N. Nitta, and K. Goda, “A practical guide to intelligent image-activated cell sorting”, Nature Protocols 14, 2370 (2019)

76.       K. Hiramatsu, T. Ideguchi, Y. Yonamine, S. Lee, Y. Luo, K. Hashimoto, T. Ito, M. Hase, J. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F. Arai, Y. Hoshino, and K. Goda, “High-throughput label-free molecular fingerprinting flow cytometry”, Science Advances 5, eaau0241 (2019)

77.       Y. Suzuki, K. Kobayashi, Y. Wakisaka, D. Deng, Y. Fujiwaki, H. Liu, S. Tanaka, C.-J. Huang, C. Lei, S. Lee, A. Isozaki, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, K. Koizumi, H. Tezuka, M. Inaba, K. Hiraki, T. Ito, M. Hase, S. Matsusaka, K. Shiba, K. Suga, M. Nishikawa, M. Jona, Y. Yatomi, Y. Yaxiaer, Y. Tanaka, T. Sugimura, N. Nitta, K. Goda, and Y. Ozeki, “Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering”, PNAS 116, 15842 (2019)

78.       M. Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K. Goda, “Ultrafast simultaneous Raman-fluorescence spectroscopy”, Analytical Chemistry 91, 15563 (2019)

79.       A. Cossarizza et al, “Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)”, European Journal of Immunology 49, 1457 (2019)

80.       H. Kobayashi, C. Lei, Y. Wu, C.-J. Huang, A. Yasumoto, M. Jona, W. Li, Y. Yaxiaer, Y. Jiang, B. Guo, C.-W. Sun, Y. Tanaka, M. Yamada, Y. Yatomi, and K. Goda, “Intelligent whole-blood imaging flow cytometry for simple, rapid, cost-effective drug-susceptibility testing of leukemia”, Lab on a Chip 19, 2688 (2019)

81.       T. Iino, S. W. Lee, K. Okano, H. Hagihara, T. Yamakawa, H. Z. Yi, T. Maeno, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, K. Goda, and Y. Hosokawa, “High-speed microparticle isolation unlimited by Poisson statistics”, Lab on a Chip 19, 2669 (2019)

82.       K. Goda, “Biophotonics and beyond”, APL Photonics 4, 050401 (2019)

83.       H. Kanno, H. Mikami, Y. Kaya, Y. Ozeki, and K. Goda, “Simple, stable, compact implementation of frequency-division-multiplexed microscopy by inline interferometry“, Optics Letters 44, 467 (2019)

84.       W. Peterson, K. Hiramatsu, and K. Goda, “Sagnac-enhanced impulsive stimulated Raman scattering for highly sensitive low-frequency Raman spectroscopy”, Optics Letters 44, 5282 (2019)

85.       Y. Yalikun, N. Ota, B. Guo, T. Tang, Y. Zhou, C. Lei, H. Kobayashi, Y. Hosokawa, M. Li, H. E. Munoz, D. Di Carlo, K. Goda, and Y. Tanaka, “Effect of flow-induced microfluidic chip deformation on imaging flow cytometry”, Cytometry Part A 97, 909 (2019)

86.       F. Zhang, C. Lei, C.-J. Huang, H. Kobayashi, C.-W. Sun, and K. Goda, “Intelligent image de-blurring for imaging flow cytometry”, Cytometry Part A 95, 549 (2019)

87.       K. Goda, N. Nitta, and A. Filby, “In flow cytometry, image is everything”, Cytometry Part A 95, 475 (2019)

88.       N. Ota, Y. Yalikun, T. Suzuki, S. Lee, Y. Hosokawa, K. Goda, and Y. Tanaka, “Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device”, Royal Society Open Science 6, 181776 (2019)

89.       D. Di Carlo, F. Arai, K. Goda, T. Huang, Y.-H. Lo, N. Nitta, Y. Ozeki, K. Tsia, S. Uemura, and K. Wong, “Comment on ghost cytometry”, Science 364, eaav1429 (2019)

90.       R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K. Goda, “High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy”, Journal of Raman Spectroscopy 50, 1141 (2019)

91.       K. Goda, “Publicationの危機、解決へリーダーシップを”, Nature Digest 16, 20 (2019)

92.       K. Hiramatsu and K. Goda, “高速ラマン分光法を利用した細胞個性を無標識・大規模計測”, Bioscience & Industry 77, 308 (2019)

93.       K. Goda, “細胞検索エンジンが拓く新世界”, 応用物理 88, 522 (2019)

94.       D. Wu, H. Kobayashi, C. Ding, C. Lei, K. Goda, and M. Ghassemi, “Modeling the biological pathology continuum with HSIC-regularized Wasserstein auto-encoders”, 32nd Conference on Neural Information Processing Systems (2019)

95.       W. Zhao, C. Lei, H. Huang, K. Goda, and H. Chen, “A comparison of image recognition algorithms for cell phenotyping in optofluidic time-stretch microscopy”, SPIE Photonics Asia, Beijing, China, doi.org/10.1117/12.2537782 (2019)

96.       A. Isozaki, H. Mikami, K. Hiramatsu, and K. Goda, “高速蛍光イメージング・ラマン分光法と生物学・医学への展開”, オプトロニクス 9 (2019)

97.       K. Tsia and K. Goda, “High-speed biomedical imaging and spectroscopy IV”, SPIE Proceedings 10889 (2021)

98.       A. Isozaki, Y. Nakagawa, M. H. Loo, Y. Shibata, N. Tanaka, D. L. Setyaningrum, J.-W. Park, Y. Shirasaki, H. Mikami, S. Uemura, D. Di Carlo, and K. Goda, “電極アレイを用いた高速液滴分取”, 化学とマイクロ・ナノシステム学会, 18, 33 (2019)

99.       N. Nitta, T. Sugimura, A. Isozaki, H. Mikami, K. Hiraki, S. Sakuma, T. Iino, F. Arai, T. Endo, Y. Fujiwaki, H. Fukuzawa, M. Hase, T. Hayakawa, K. Hiramatsu, Y. Hoshino, M. Inaba, T. Ito, H. Karakawa, Y. Kasai, K. Koizumi, S. Lee, C. Lei, M. Li, T. Maeno, S. Matsusaka, D. Murakami, A. Nakagawa, Y. Oguchi, M. Oikawa, T. Ota, K. Shiba, H. Shintaku, Y. Shirasaki, K. Suga, Y. Suzuki, N. Suzuki, Y. Tanaka, H. Tezuka, C. Toyokawa, Y. Yalikun, M. Yamada, M. Yamagishi, T. Yamano, A. Yasumoto, Y. Yatomi, M. Yazawa, D. Di Carlo, Y. Hosokawa, S. Uemura, Y. Ozeki, and K. Goda, “Intelligent image-activated cell sorting“, Cell 175, 266 (2018)

100.    C. Lei, H. Kobayashi, D. Wu, M. Li, A. Isozaki, A. Yasumoto, H. Mikami, T. Ito, N. Nitta, T. Sugimura, M. Yamada, Y. Yatomi, D. Di Carlo, Y. Ozeki, and K. Goda, “High-throughput imaging flow cytometry by optofluidic time-stretch microscopy“, Nature Protocols 13, 1603 (2018)

101.    H. Mikami, J. Harmon, H. Kobayashi, S. Hamad, Y. Wang, O. Iwata, K. Suzuki, T. Ito, Y. Aisaka, N. Kutsuna, K. Nagasawa, H. Watarai, Y. Ozeki, and K. Goda, “Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit“, Optica 5, 117 (2018)

102.    M. Li, M. van Zee, C. T. Riche, B. Tofig, S. Gallaher, S. Merchant, R. Damoiseaux, K. Goda, and D. Di Carlo, “A gelatin microdroplet platform for high-throughput sorting of hyperproducing single-cell-derived microalgal clones“, Small 14, 1803315 (2018)

103.    H. Mikami, C. Lei, Y. Ozeki, and K. Goda, “High-speed imaging meets single-cell analysis“, Chem 4, 1 (2018)

104.    H. E. Munoz, M. Li, C. T. Riche, N. Nitta, E. Diebold, J. Lin, K. Owsley, M. Bahr, K. Goda, and D. Di Carlo, “Single-cell analysis of morphological and metabolic heterogeneity in Euglena gracilis by fluorescence imaging flow cytometry“, Analytical Chemistry 90, 11280 (2018)

105.    M. Li, M. van Zee, K. Goda, and D. Di Carlo, “Size-based sorting of hydrogel droplets using inertial microfluidics“, Lab on a Chip 18, 2575 (2018)

106.    T. Xiao, Z. Bao, Z. Cheng, and K. Goda, “Giant optical activity in an all-dielectric spiral nanoflower“, Small 14, 1800485 (2018)

107.    T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium nanocavity“, Photonics Research 43, 2885 (2018)

108.    T. Miura, H. Mikami, A. Isozaki, T. Ito, Y. Ozeki, and K. Goda, “On-chip light-sheet fluorescence imaging flow cytometry at a high flow speed of 1 m/s“, Biomedical Optics Express 9, 3424 (2018)

109.    C. Lei and K. Goda, “The complete optical oscilloscope“, Nature Photonics 12, 190 (2018)

110.    T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu, S. Lee, K. Hiramatsu, V. R. Badarla, J. Park, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy“, Optics Letters 43, 4057 (2018)

111.    T. Xiao, Z. Zhao, W. Zhou, C. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared high-Q germanium microring resonator“, Optics Letters 43, 2885 (2018)

112.    C. Lei, N. Nitta, Y. Ozeki, and K. Goda, “Optofluidic time-stretch imaging: recent advances“, Optical Review 25, 464 (2018)

113.    T. Maeno, T. Uzawa, I. Kono, K. Okano, T. Iino, K. Fukita, O. Iwata, K. Suzuki, T. Ito, K. Goda, and Y. Hosokawa, “Targeted delivery of fluorogenic peptide aptamers into live microalgae by femtosecond laser photoporation at single-cell resolution“, Scientific Reports 8, 8271 (2018)

114.    K. Goda, A. Zumbusch, Z. Huang, and Y. Ozeki, “Guest editorial: Special topic on coherent Raman spectroscopy and imaging“, APL Photonics 3, 090401 (2018)

115.    Y. Ozeki and K. Goda, “Opening a new world by unconventional bioimaging“, Optronics 37, 62 (2018)

116.    C. Lei, H. Kobayashi, Y. Ozeki, and K. Goda, “Optical time-stretch imaging for biofuel production, medical diagnostics, and drug discovery“, Optronics 37, 74 (2018)

117.    H. Mikami, Y. Ozeki, and K. Goda, “Ultrafast confocal fluorescence microscopy using telecommunication technology“, Optronics 37, 94 (2018)

118.    T. Xiao, Z. Cheng, and K. Goda, “高性能ナノデバイスを実現する螺旋状ナノフラワー“, 化学 74, 45 (2018)

119.    K. Goda and N. Nitta, “スーパースター細胞を超高速に発見する“, 理学部ニュース 11, 6 (2018)

120.    K. Tsia and K. Goda, “High-speed biomedical imaging and spectroscopy III: toward big data instrumentation and management”, SPIE Proceedings 10505 (2018)

121.    C. V. Hoang, K. Hayashi, Y. Ito, G. Naoki, S. Xi, Z. Cheng, K. Ueno, K. Goda, and H. Misawa, “Interplay of hot electrons from localized and propagating plasmons“, Nature Communications 8, 771 (2017)

122.    Y. Jiang, C. Lei, A. Yasumoto, T. Ito, B. Guo, H. Kobayashi, Y. Ozeki, Y. Yatomi, and K. Goda, “Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy“, Lab on a Chip 17, 2426 (2017)

123.    H. Kobayashi, C. Lei, A. Mao, Y. Jiang, Y. Wu, B. Guo, Y. Ozeki, and K. Goda, “Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning“, Scientific Reports 7, 12454 (2017)

124.    M. Li, H. E. Munoz, K. Goda, and D. Di Carlo, “Shape-based separation of microalga Euglena gracilis using inertial microfluidics“, Scientific Reports 7, 10802 (2017)

125.    B. Guo, C. Lei, T. Ito, Y. Yaxiaer, H. Kobayashi, Y. Jiang, Y. Tanaka, Y. Ozeki, and K. Goda, “High-throughput label-free single-cell microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy“, Cytometry Part A 91, 494 (2017)

126.    K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection“, Optics Letters 42, 4335 (2017)

127.    T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared germanium photonic crystal cavity“, Optics Letters 42, 2882 (2017)

128.    J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “A focusing subwavelength grating coupler for mid-infrared suspended membrane Ge waveguides“, Optics Letters 42, 2094 (2017)

129.    Y. Yonamine, Y. Suzuki, T. Ito, Y. Miura, K. Goda, Y. Ozeki, and Y. Hoshino, “Monitoring photosynthetic activity in live microalgal cells by Raman spectroscopy with deuterium oxide as a tracking probe“, ChemBioChem 18, 2063 (2017)

130.    T.-H. Xiao, Z. Cheng, and K. Goda, “Graphene-on-silicon hybrid plasmonic-photonic integrated circuits“, Nanotechnology 28, 245201 (2017)

131.    B. Guo, C. Lei, Y. Wu, H. Kobayashi, T. Ito, A. Yasumoto, Y. Yaxiaer, S. W. Lee, A. Isozaki, M. Li, Y. Jiang, A. Yasumoto, D. Di Carlo, Y. Tanaka, Y. Yatomi, Y. Ozeki, and K. Goda, “Optofluidic time-stretch quantitative phase microscopy“, Methods 136, 116 (2017)

132.    C. Lei, Y. Wu, A. C. Sankaranarayanan, S. Chang, B. Guo, N. Sasaki, H. Kobayashi, C. Sun, Y. Ozeki, and K. Goda, “GHz optical time-stretch microscopy by compressive sensing“, IEEE Photonics Journal 9, 3900308 (2017)

133.    C. Lei, Y. Ozeki, and K. Goda, “Large-scale label-free single-cell analysis by optofluidic time-stretch microscopy and artificial intelligence“, Japanese Journal of Optics 46, 282 (2017)

134.    Y. Ozeki, Y. Suzuki, Y. Wakisaka, and K. Goda, “Single-cell metabolite analysis of Euglena gracilis with stimulated Raman scattering”, Japanese Journal of Optics 46, 247 (2017)

135.    T. Ideguchi and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second”, Japanese Journal of Optics 46, 228 (2017)

136.    Y. Ozeki, Y. Suzuki, Y. Wakisaka, and K. Goda, “誘導ラマン散乱顕微法による生きた微細藻類の1細胞代謝物解析“, Optical Alliance 28, 11 (2017)

137.    Y. Ozeki and K. Goda, “微細藻類の高速・無標識・一細胞代謝物イメージング“, Bioscience & Industry 75, 204 (2017)

138.    K. Hiramatsu, T. Ideguchi, and K. Goda, “高速無標識バイオイメージングに向けたFourier-transform CARS“, Optical Alliance 28, 48 (2017)

139.    O. Iwata, K. Yamada, T. Ito, K. Suzuki, Y. Ozeki, and K. Goda, “スーパー微細藻類バイオ燃料の創出に向けた基盤技術“, 生物物理 57, 235 (2017)

140.    Y. Ozeki, T. Ideguchi, and K. Goda, “高速ラマン計測による生命科学へのアプローチ“, 電気学会誌 137, 768 (2017)

141.    K. Goda, “2030年のサイエンスと革命前夜”, 理学部ニュース 5, 3 (2017)

142.    M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy operating at 50,000 spectra/second“, Proceedings of SPIE doi:10.1117/12.2249726 (2017)

143.    B. Guo, C. Lei, T. Ito, Y. Ozeki, and K. Goda, “High-throughput label-free screening of Euglena gracilis with optofluidic time-stretch quantitative phase microscopy“, Proceedings of SPIE doi:10.1117/12.2251157 (2017)

144.    Y. Suzuki, Y. Wakisaka, O. Iwata, A. Nakashima, T. Ito, M. Hirose, R. Domon, M. Sugawara, N. Tsumura, H. Watarai, T. Shimobaba, K. Suzuki, K. Goda, and Y. Ozeki, “High-speed stimulated Raman scattering microscopy for studying the metabolic diversity of motile Euglena gracilis“, Proceedings of SPIE doi:10.1117/12.2250455 (2017)

145.    H. Mikami, J. Harmon, Y. Ozeki, and K. Goda, “High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy“, Proceedings of SPIE doi:10.1117/12.2272924 (2017)

146.    Y. Wakisaka, Y. Suzuki, O. Iwata, A. Nakashima, T. Ito, M. Hirose, R. Domon, M. Sugawara, N. Tsumura, H. Watarai, T. Shimobaba, K. Suzuki, K. Goda, and Y. Ozeki, “Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy“, Nature Microbiology 1, 16124 (2016)

147.    T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy“, Optica 3, 748 (2016)

148.    K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second“, Scientific Reports 6, 21036 (2016)

149.    K. Yamada, H. Suzuki, T. Takeuchi, Y. Kazama, S. Mitra, T. Abe, K. Goda, K. Suzuki, and O. Iwata, “Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting“, Scientific Reports 6, 26327 (2016)

150.    C. Lei, B. Guo, Z. Cheng, and K. Goda, “Optical time-stretch imaging: principles and applications“, Applied Physics Reviews 3, 011102 (2016)

151.    C. Lei, T. Ito, M. Ugawa, T. Nozawa, O. Iwata, M. Maki, G. Okada, H. Kobayashi, X. Sun, P. Tiamsak, N. Tsumura, K. Suzuki, D. Di Carlo, Y. Ozeki, and K. Goda, “High-throughput label-free image cytometry and image-based classification of live Euglena gracilis“, Biomedical Optics Express 7, 2703 (2016)

152.    M. Li, H. E. Munoz, A. Schmidt, B. Guo, C. Lei, K. Goda, and D. Di Carlo, “Inertial focusing of ellipsoid Euglena gracilis cells in a stepped microchannel“, Lab on a Chip 16, 4458 (2016)

153.    M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/second enabled by a scanning Fourier-domain delay line“, Vibrational Spectroscopy 91, 163 (2016)

154.    B. Guo, C. Lei, T. Ito, Y. Jiang, Y. Ozeki, and K. Goda, “High-throughput accurate single-cell screening of Euglena gracilis with fluorescence-assisted optofluidic time-stretch microscopy“, PLoS ONE 11, e0166214 (2016)

155.    J.-W. Park, S. H. Kim, T. Ito, T. Fujii, S. Y. Kim, T. Laurell, S. W. Lee, and K. Goda, “Acoustofluidic harvesting of microalgae on a single chip“, Biomicrofluidics 10, 034119 (2016)

156.    A. Phatak, Z. Cheng, C. Qin, and K. Goda, “Design of electro-optic modulators based on graphene-on-silicon slot waveguides“, Optics Letters 41, 2501 (2016)

157.    Z. Cheng and K. Goda, “Design of waveguide-integrated graphene devices for photonic gas sensing“, Nanotechnology 27, 505206 (2016)

158.    H. Mikami, L. Gao, and K. Goda, “Ultrafast optical imaging technology: principles and applications of emerging methods“, Nanophotonics 5, 98 (2016)

159.    Z. Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress on mid-IR graphene photonics and biochemical applications“, Frontiers of Optoelectronics 9, 1 (2016)

160.    C. Lei, Z. Cheng, and K. Goda, “Cancer detection with high-throughput image cytometry”, Medical Imaging Technology 34, 68 (2016)

161.    H. Mikami, C. Lei, Y. Suzuki, Y. Ozeki, and K. Goda, “超高速イメージングで生命科学“, O plus E 38, 922 (2016)

162.    K. Hashimoto, T. Ideguchi, and K. Goda, “高速の化学分析が可能に!高速広帯域コヒーレントラマン分光の実現”, 化学 71, 68 (2016)

163.    A. Yazaki, K. Goda, and B. Jalali, “超高速表面検査を実現する分散融合型暗視野レーザスキャナ”, 画像ラボ 27, 1 (2016)

164.    H. Mikami and K. Goda, “異分野融合がセレンディピティを引き起こす”, 理学部ニュース 5, 8 (2016)

165.    H. He, K. Nakagawa, Y. Wang, Y. Hosokawa, and K. Goda, “Mechanism for microtsunami-induced intercellular mechanosignalling“, Nature Photonics 9, 623 (2015)

166.    T. Ishida, T. Sato, T. Ishikawa, M. Oguma, N. Itamura, K. Goda, N. Sasaki, and H. Fujita, “Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime“, Nano Letters 15, 1476 (2015)

167.    M. Ugawa, C. Lei, T. Nozawa, T. Ideguchi, D. Di Carlo, S. Ota, Y. Ozeki, and K. Goda, “High-throughput optofluidic particle profiling with morphological and chemical specificity“, Optics Letters 40, 4803 (2015)

168.    M. Tamamitsu, K. Nakagawa, R. Horisaki, A. Iwasaki, Y. Oishi, A. Tsukamoto, F. Kannari, I. Sakuma, and K. Goda, “Design for sequentially timed all-optical mapping photography with optimum temporal performance“, Optics Letters 40, 633 (2015)

169.    T. Suzuki, F. Isa, L. Fujii, K. Hirosawa, K. Nakagawa, K. Goda, I. Sakuma, and F. Kannari, “Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering“, Optics Express 23, 30512 (2015)

170.    M. Tamamitsu, Y. Kitagawa, K. Nakagawa, R. Horisaki, Y. Oishi, S. Morita, Y. Yamagata, K. Motohara, and K. Goda, “Spectrum slicer for snapshot spectral imaging“, Optical Engineering 54, 123115 (2015)

171.    K. Nakagawa, F. Kannari, I. Sakuma, and K. Goda, “Photography on the femtosecond scale“, Imaging & Microscopy 4, 44 (2015)

172.    M. Ugawa, T. Ideguchi, and K. Goda, “Ultrafast spectroscopy and its applications enabled by time-domain Fourier optics“, Review of Laser Engineering 43, 193 (2015)

173.    K. Nakagawa and K. Goda, “Sequentially timed all-optical mapping photography for capturing picosecond-to-femtosecond dynamics”, Journal of Japan Laser Processing Society 22, 225 (2015)

174.    K. Nakagawa, “STAMP (Sequentially timed all-optical mapping photography) for observation of ultrafast non-repetitive phenomena”, Review of Laser Engineering 43, 198 (2015)

175.    K. Nakagawa and K. Goda, “超高速光学撮像法が拓くフロンティア“, 応用物理 84, 409 (2015)

176.    K. Nakagawa, H. Kobayashi, G. Yu, Y. Wakisaka, T. Nozawa, and K. Goda, “高速・高分解能ブレインイメージングに向けた技術革新”, Brain Science Review, クバプロ (2015)

177.    A. Yazaki, K. Goda, and B. Jalali, “超高速表面検査を実現する分散融合型暗視野レーザスキャナー”, 映像情報メディア学会誌 69, 574 (2015)

178.    K. Nakagawa and K. Goda, “1兆分の1秒以下の世界を捉える連写撮影法”, 画像ラボ 26, 13 (2015)

179.    K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography“, Nature Photonics 8, 695 (2014)

180.    K. Hashimoto, H. Mizuno, K. Nakagawa, R. Horisaki, A. Iwasaki, F. Kannari, I. Sakuma, and K. Goda, “High-speed multispectral videography with a periscope array in a spectral shaper“, Optics Letters 39, 6942 (2014)

181.    A. Yazaki, C. Kim, J. Chan, A. Mahjoubfar, K. Goda, M. Watanabe, and B. Jalali, “Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning“, Applied Physics Letters 104, 251106 (2014)

182.    M. Ugawa, H. Kobayashi, and K. Goda, “Ultrafast optical imaging for freezing fast dynamics”, Japanese Journal of Optics 3, 124 (2014)

183.    K. Nakagawa, I. Sakuma, F. Kannari, and K. Goda, “Motion picture femtophotography”, Optics & Photonics News 59, December (2014)

184.    M. Takahashi, Y. Sakaki, T. Ideguchi, and K. Goda, 「分散フーリエ分光法・デュアルコム分光法を用いた新規な超高速分光測定」, 分光研究 63, 5, 210 (2014)

185.    M. Ugawa, T. Ideguchi, and K. Goda, 「迅速・非侵襲に血中がん細胞を発見するカメラ」, PET Journal 28, 28 (2014)

186.    K. Nakagawa and K. Goda, 1兆分の1秒以下の世界を捉える連写カメラ」, セラミックス 49, 12 (2014)

187.    A. Nakagawa, K. Ohtani, K. Goda, R. Armonda, and E. Tominaga, 「爆風による外傷性脳損傷 (blast-induced traumatic brain injury), Annual Review 神経, 192 (2014)

188.    B. Jalali, M. Li, K. Goda, and M. H. Asghari, “Real-time photonic measurements, data management, and processing”, Proceedings of SPIE 9279 (2014)

189.    K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements“, Nature Photonics 7, 102 (2013)

190.    H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner“, Applied Optics 52, 4072 (2013)

191.    A. Mahjoubfar, K. Goda, G. Betts, and B. Jalali, “Optically amplified detection for biomedical sensing and imaging“, Journal of Optical Society of America A 30, 2124 (2013)

192.    M. Takahashi and K. Goda, 「超高速光イメージング技術を用いた低コストがん診断法」, 映像情報インダストリアル, 5月号 (2013)

193.    K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer“, PNAS (2012)

194.    K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, O. Malik, E. Chen, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner“, Scientific Reports 2, 445 (2012)

195.    D. R. Gossett, H. T. K. Tse, J. Dudani, K. Goda, T. Woods, S. Graves, and D. Di Carlo, “Inertial manipulation and transfer of microparticles across laminar fluid streams“, Small 8, 2757 (2012)

196.    K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm“, Optics Express 20, 19612 (2012)

197.    S. H. Kim, K. Goda, A. Fard, and B. Jalali, “An optical time-domain analog pattern correlator for high-speed image recognition”, Optics Letters 36, 220 (2011)

198.    A. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media”, Biomedical Optics Express 2, 3387 (2011)

199.    A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter”, Applied Physics Letters 98, 101107 (2011)

200.    Z. Tan, C. Wang, K. Goda, and B. Jalali, “Jammed-array wideband sawtooth filter”, Optics Express 19, 24563 (2011)

201.    K. Goda and B. Jalali, “Noise figure of amplified dispersive Fourier transformation”, Physical Review A 82, 033827 (2010)

202.    B. Jalali, D. R. Solli, K. Goda, K. Tsia, and C. Ropers, “Real-time measurements, rare events, and photon economics”, European Journal of Physics Special Topics 185, 145 (2010)

203.    B. Jalali, K. Goda, P. Soon-Shiong, and K. K. Tsia, “Time-stretch imaging and its applications to high-throughput microscopy and microsurgery”, IEEE Photonics Society Newsletter 24, 11 (2010)

204.    B. Jalali, P. Soon-Shiong, and K. Goda, “Breaking speed and sensitivity limits”, Optik & Photonik 2, 32 (2010)

205.    K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope”, Optics Express 18, 10016 (2010)

206.    The LIGO Scientific Collaboration and the VIRGO Collaboration, “Searches for gravitational waves from known pulsars with Science Run 5 LIGO data”, The Astrophysical Journal 713, 671 (2010)

207.    The LIGO Scientific Collaboration and the VIRGO Collaboration, “Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO Science Run 5 and VIRGO Science Run 1”, The Astrophysical Journal 715, 1438 (2010)

208.    K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena“, Nature 458, 1145 (2009)

209.    The LIGO Scientific Collaboration and the VIRGO Collaboration, “An upper limit on the stochastic gravitational-wave background of cosmological origin“, Nature 460, 990 (2009)

210.    K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation“, Physical Review A 80, 043821 (2009)

211.    K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging”, Applied Physics Letters 95, 251101 (2009)

212.    K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery”, Optics Letters 34, 2099 (2009)

213.    K. Goda, 「光情報処理を用いた超高速イメージング法」, OptoNews 3, 7 (2009)

214.    The LIGO Scientific Collaboration, “All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data”, Physical Review Letters 102, 111102 (2009)

215.    The LIGO Scientific Collaboration, “LIGO: the laser interferometer gravitational-wave observatory”, Reports on Progress in Physics 72, 076901 (2009)

216.    The LIGO Scientific Collaboration,Einstein@Home search for periodic gravitational waves in LIGO S4 data”, Physical Review D 79, 022001 (2009)

217.    The LIGO Scientific Collaboration, “Einstein@Home search for periodic gravitational waves in early S5 LIGO data”, Physical Review D 80, 042003 (2009)

218.    The LIGO Scientific Collaboration, “Search for gravitational waves from low mass binary coalescences in the first year of LIGO’s S5 data”, Physical Review D 79, 122001 (2009)

219.    The LIGO Scientific Collaboration, “Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO’s fifth science run”, Physical Review D 80, 047101 (2009)

220.    The LIGO Scientific Collaboration, “Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data”, Physical Review D 80, 062001 (2009)

221.    The LIGO Scientific Collaboration, “First LIGO search for gravitational wave bursts from cosmic (super)strings”, Physical Review D 80, 062002 (2009)

222.    The LIGO Scientific Collaboration, “Search for high frequency gravitational-wave bursts in the first calendar year of LIGO’s fifth science run”, Physical Review D 80, 102002 (2009)

223.    The LIGO Scientific Collaboration, “Search for gravitational-wave bursts in the first year of the fifth LIGO science run”, Physical Review D 80, 102001 (2009)

224.    The LIGO Scientific Collaboration, “Stacked search for gravitational waves from the 2006 SGR 1900+14 storm”, Astrophysical Journal Letters 701, L68 (2009)

225.    The LIGO Scientific Collaboration, “Observation of a kilogram-scale oscillator near its quantum ground state”, New Journal of Physics 11, 073032 (2009)

226.    K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector“, Nature Physics 4, 472 (2008)

227.    K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading”, Applied Physics Letters 93, 131109 (2008)

228.    K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation”, Applied Physics Letters 93, 031106 (2008)

229.    K. Goda, E. E. Mikhailov, O. Miyakawa, S. Saraf, S. Vass, A. J. Weinstein, and N. Mavalvala, “Generation of a stable low-frequency squeezed vacuum field with periodically-poled KTiOPO4 at 1064 nm”, Optics Letters 33, 92 (2008)

230.    The LIGO Scientific Collaboration, “Search for gravitational-wave bursts from soft gamma repeaters”, Physical Review Letters 101, 211102 (2008)

231.    The LIGO Scientific Collaboration, “Search for S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals”, Physical Review D 78, 042002 (2008)

232.    The LIGO Scientific Collaboration, “Search for gravitational waves from binary inspirals in S3 and S4 LIGO data”, Physical Review D 77, 062002 (2008)

233.    The LIGO Scientific Collaboration, “Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs”, Physical Review D 77, 062004 (2008)

234.    The LIGO Scientific Collaboration, “First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds”, Physical Review D 77, 022001 (2008)

235.    The LIGO Scientific Collaboration, “Implications for the origin of GRB 070201 from LIGO observations”, The Astrophysical Journal 681, 1419 (2008)

236.    The LIGO Scientific Collaboration, “Beating the spin-down limit on gravitational wave emission from the Crab Pulsar” Astrophysical Journal Letters 683, L45 (2008)

237.    The LIGO Scientific Collaboration, “A joint search for gravitational wave bursts with AURIGA and LIGO”, Classical and Quantum Gravity 25, 095004 (2008)

238.    The LIGO Scientific Collaboration, “First joint search for gravitational-wave bursts in LIGO and GEO 600 data”, Classical and Quantum Gravity 25, 245008 (2008)

239.    K. Somiya, K. Goda, Y. Chen, and E. E. Mikhailov, “Utility investigation of artificial time delay in displacement-noise-free interferometers”, Physical Review D 76, 022002 (2007)

240.    The LIGO Scientific Collaboration, “Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: results from the second LIGO science run”, Physical Review D 76, 082001 (2007)

241.    The LIGO Scientific Collaboration, “Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004 using LIGO”, Physical Review D 76, 062003 (2007)

242.    The LIGO Scientific Collaboration, “Upper limits on gravitational wave emission from 78 radio pulsars”, Physical Review D 76, 042001 (2007)

243.    The LIGO Scientific Collaboration, “Upper limit map of a background of gravitational waves”, Physical Review D 76, 082003 (2007)

244.    The LIGO Scientific Collaboration, “First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds”, Physical Review D 76, 022001 (2007)

245.    The LIGO Scientific Collaboration, “Search for gravitational-wave bursts in LIGO data from the fourth science run”, Classical and Quantum Gravity 24, 5343 (2007)

246.    The LIGO Scientific Collaboration, “Searching for a stochastic background of gravitational waves with LIGO”, The Astrophysical Journal 659, 918 (2007)

247.    G. Popescu, T. Ikeda, K. Goda, C. A. Best, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. Feld, “Optical measurement of cell membrane tension”, Physical Review Letters 97, 218101 (2006)

248.    Y. Chen, A. Pai, K. Somiya, S. Kawamura, S. Sato, K. Kokeyama, R. L. Ward, K. Goda, and E. E. Mikhailov, “Interferometers for displacement-noise-free gravitational-wave detection”, Physical Review Letters 97, 151103 (2006)

249.    E. E. Mikhailov, K. Goda, and N. Mavalvala, “Noninvasive measurements of cavity parameters by use of squeezed vacuum”, Physical Review A 74, 033817 (2006)

250.    E. E. Mikhailov, K. Goda, T. Corbitt, and N. Mavalvala, “Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers”, Physical Review A 73, 053810 (2006)

251.    The LIGO Scientific Collaboration, “Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries”, Physical Review D 73, 102002 (2006)

252.    The LIGO Scientific Collaboration, “Search for gravitational waves from binary black hole inspirals in LIGO data”, Physical Review D 72, 062001 (2006)

253.    The LIGO Scientific Collaboration, “Search for gravitational-wave bursts in LIGO’s third science run”, Classical and Quantum Gravity 23, S29 (2006)

254.    K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum noise locking”, Journal of Optics B: Quantum and Semiclassical Optics 7, S421 (2005)

255.    K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator”, Physical Review A 72, 043819 (2005)

256.    The LIGO Scientific Collaboration, “Upper limits on a stochastic background of gravitational waves”, Physical Review Letters 95, 221101 (2005)

257.    The LIGO Scientific Collaboration, “Limits on gravitational-wave emission from selected pulsars using LIGO data”, Physical Review Letters 94, 181103 (2005)

258.    The LIGO Scientific Collaboration, “Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors”, Physical Review D 72, 042002 (2005)

259.    The LIGO Scientific Collaboration, “Upper limits on gravitational wave bursts in LIGO’s second science run”, Physical Review D 72, 062001 (2005)

260.    The LIGO Scientific Collaboration, “Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts”, Physical Review D 72, 122004 (2005)

261.    The LIGO Scientific Collaboration, “Search for gravitational waves from galactic and extra-galactic binary neutron stars”, Physical Review D 72, 082001 (2005)

262.    The LIGO Scientific Collaboration, “Search for gravitational waves from primordial black hole binary coalescences in the galactic halo”, Physical Review D 72, 082002 (2005)

263.    The LIGO Scientific Collaboration, “First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform”, Physical Review D 72, 102004 (2005)

264.    K. Goda, D. Ottaway, B. Connelly, R. Adhikari, N. Mavalvala, and A. Gretarsson, “Frequency resolving spatiotemporal wavefront sensor”, Optics Letters 29, 1452 (2004)

265.    The LIGO Scientific Collaboration, “First upper limits from LIGO on gravitational wave bursts”, Physical Review D 69, 102001 (2004)

266.    The LIGO Scientific Collaboration, “Analysis of LIGO data for gravitational waves from binary neutron stars”, Physical Review D 69, 122001 (2004)

267.    The LIGO Scientific Collaboration, “Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors”, Physical Review D 69, 082004 (2004)

268.    The LIGO Scientific Collaboration, “Analysis of first LIGO science data for stochastic gravitational waves”, Physical Review D 69, 122004 (2004)

269.    The LIGO Scientific Collaboration, “Detector description and performance for the first coincidence observations between LIGO and GEO”, Nuclear Instruments and Methods in Physics Research Section A 517, 154 (2004)

Awards

Goda Lab members have received numerous awards, prizes, and honors from conferences, foundations, and governments.

Mika Hayashi

Serendipity Best Poster Award, Serendipity Symposium (2024)

Yuhong Liu

Serendipity Best Poster Award, Serendipity Symposium (2024)

Junyu Dong

Serendipity Challenger Award, Serendipity Symposium (2024)

Ryo Nishiyama

Serendipity Challenger Award, Serendipity Symposium (2024)

Yunjie Deng

Serendipity Innovator Award, Serendipity Symposium (2024)

Yuta Nakagawa

Serendipity Fusion Award, Serendipity Symposium (2024)

Mika Hayashi

Hitachi High-Tech Best Presentation Award, BIOS, SPIE Photonics West (2024)

Xuke (Cohen) Tang

Chinese Government Award for Outstanding Self-financed Students Abroad (2023)

Keisuke Goda

Good Design Award, Japan Institute of Design Promotion (2023)

Hiroshi Kanno

Konica Minolta Hikari Mirai Award, Optical Society of Japan (2023)

Kotaro Hiramatsu

Best Paper Award, Optical Society of Japan (2023)

Keisuke Goda

Frontiers of Science Award, International Congress of Basic Science (2023)

Yuzuki (Emma) Nagasaka

Best Presentation Award, CHEMINAS (2023)

Hongqian (Sophy) Zhang

Best Presentation Award, Japan Society of Applied Physics (2023)

Yuqi (Iris) Zhou

Young Scientist Award, Quantum Life Science Society (2023)

Yunjie (Jacey) Deng

Research Promotion Award, School of Science, University of Tokyo (2023)

Hiroshi Kanno

Research Promotion Award, School of Science, University of Tokyo (2023)

Keisuke Goda

Fellow, AAAS (2023)

Yunjie (Jacey) Deng

Serendipity Award, Serendipity Lab (2022)

Natsumi (Tiffany) Ishii

Best Poster Award, Serendipity Symposium (2022)

Hiroki Matsumura

Award of Excellence, Program of Excellence in Photon Science, University of Tokyo (2022)

Yuqi Zhou

Chinese Government Award for Oustanding Self-Financed Students Abroad (2022)

Shigekazu Takizawa

Best Poster Award, 27th International Conference on Raman Spectroscopy (2022)

Mika Hayashi

Runner-Up Award, 3MT Thesis Competition, University of Tokyo (2022)

Keisuke Goda

Philipp Franz von Siebold Award, Humboldt Foundation (2022)

Jorgen Walker Peterson

Best Business Prize, Photonics Challenge (2022)

Matthew Lindley

Research Promotion Award, School of Science, University of Tokyo (2022)

Ryuji Nakao

Research Promotion Award, School of Science, University of Tokyo (2022)

Jorgen Walker Peterson

Award of Excellence, NEDO Technology Commercialization Program (2022)

Jorgen Walker Peterson

VC Award, NEDO Technology Commercialization Program (2022)

Jorgen Walker Peterson

Teledyne Best Presentation Award, BIOS, SPIE Photonics West (2022)

Yuqi Zhou

Serendipity Award, Serendipity Lab (2021)

Hiroshi Kanno

Serendipity Award, Serendipity Lab (2021)

Kotaro Hiramatsu

Young Scientist Presentation Award, Spectroscopical Society of Japan (2021)

Jorgen Walker Peterson

Young Scientist Presentation Award, Spectroscopical Society of Japan (2021)

Tinghui Xiao

R&D Encouragement Award, NF Foundation (2021)

Risako Kameyama

Konica Minolta Hikari Mirai Award, Optical Society of Japan (2021)

Tinghui Xiao

Best Paper Award, Optical Society of Japan (2021)

Julia Gala de Pablo

Best Presentation Award, Quantum Life Science Conference (2021)

Hiroshi Kanno

Best Poster Presentation Award, Quantum Life Science Conference (2021)

Jorgen Walker Peterson

Best Poster Presentation Award, Quantum Life Science Conference (2021)

Keisuke Goda

Pioneers of Miniaturization Lectureship, Royal Society of Chemistry and Dolomite (2021)

Yuta Nakagawa

Best Presentation Award, Yeast Genetics Forum (2021)

Tinghui Xiao

Young Scientist Award, Quantum Life Science Society (2021)

Yuta Nakagawa

Best Student Poster Award, CHEMINAS Conference (2021)

Keisuke Goda

Eto-Hosoya Prize, Futaba Electronic Memorial Foundation (2021)

Risako Kameyama

Teledyne SP Devices Best Presentation Award, BIOS, SPIE Photonics West (2021)

Yuqi Zhou

Hitachi High-Tech Best Presentation Award, BIOS, SPIE Photonics West (2021)

Tinghui Xiao

Distinguished Referee Award, Europhysics Letters (2021)

Phillip Charles McCann

PicoQuant Best Picture Award, SPIE Photonics West (2021)

Akihiro Isozaki

Young Innovator Award, Society for Chemistry and Micro-Nano Systems (2021)

Phillip Charles McCann

Research Promotion Award, School of Science, University of Tokyo (2021)

Keisuke Goda

SPIE Biophotonics Technology Innovator Award (2021)

Hideharu Mikami

Photonics Encouragement Award, Japan Society of Applied Physics (2020)

Risako Kameyama

Best Student Presentation Award, Japan Society for Molecular Science (2020)

Julia Gala de Pablo

Best Poster Award, Serendipity Symposium (2020)

Taketo Araki

Best Poster Award, Serendipity Symposium (2020)

Kotaro Hiramatsu

R&D Encouragement Award, NF Foundation (2020)

Yuta Nakagawa

Grand Prize, 3MT Thesis Award, University of Tokyo (2020)

Keisuke Goda

MEXT Prize for Science and Technology, MEXT, Government of Japan (2020)

Tatsuya Tajima

Department Chair Award, Department of Chemistry, University of Tokyo (2020)

Yuqi Zhou

Hamamatsu Best Presentation Award, BIOS, SPIE Photonics West (2020)

Matthew Lindley

Hitachi High-Tech Best Presentation Award, BIOS, SPIE Photonics West (2020)

Hiroki Matsumura

Award of Excellence, Program of Excellence in Photon Science, University of Tokyo (2020)

Hiroshi Kanno

Award of Excellence, Program of Excellence in Photon Science, University of Tokyo (2020)

Yuta Nakagawa

Research Promotion Award, School of Science, University of Tokyo (2020)

Keisuke Goda

Fellow, The Royal Society of Chemistry, The United Kingdam (2020)

Akihiro Isozaki

Imaging Science Award, Konica Minolta Science and Technology Foundation (2020)

Jorgen Walker Peterson

Best Oral Presentation Award, Student Conference on Light (2019)

Kotaro Hiramatsu

Best Presentation Award, Japan Society of Applied Physics (2019)

Yuta Nakagawa

Best Poster Award, Serendipity Symposium (2019)

Yunzhao Wu

Best Poster Award, Serendipity Symposium (2019)

Muzhen Xu

Best Poster Award, Serendipity Symposium (2019)

Hideharu Mikami

Best Paper Award, Optical Society of Japan (2019)

Keisuke Goda

Analytical Chemistry Young Innovator Award, American Chemical Society (2019)

Keisuke Goda

Outstanding Reviewer Award, Light: Science & Applications (2019)

Akihiro Isozaki

Research Excellence Award, CHEMINAS Conference (2019)

Kotaro Hiramatsu

Best Presentation Award, Chemical Society of Japan (2019)

Yuqi Zhou

Best Poster Award, Quantum Life Science Conference (2019)

Keisuke Goda

Yomiuri Techno Forum Gold Medal, Yomiuri Shimbun (2019)

Tinghui Xiao

Chinese Government Award for Oustanding Self-Financed Students Abroad (2019)

Ryo Kinegawa

Research Encouragement Award, School of Science, University of Tokyo (2019)

Kotaro Hiramatsu

Best Presentation Award, BIOS, SPIE Photonics West (2019)

Hideharu Mikami

Best Presentation Award, BIOS, SPIE Photonics West (2019)

Keisuke Goda

Japan Academy Medal, The Japan Academy (2019)

Hideharu Mikami

Imaging Science Award, Konica Minolta Science and Technology Foundation (2019)

Keisuke Goda

NAC High-Speed Imaging Award, ICHSIP Congress (2018)

Keisuke Goda

Ichimura Prize in Science for Distinguished Achievement, Ichimura Foundation (2018)

Akihiro Isozaki

Photron High-Speed Imaging Award, Photron Corporation (2018)

Keisuke Goda

Young Scientist Award, Multidisciplinary Conference on Optofluidics (2018)

Akihiro Isozaki

Winner, Cytometry Art Contest, International Society for Advancement of Cytometry (2018)

Keisuke Goda

Eiichi Takano Award, Japan Society of Applied Physics (2018)

Keisuke Goda

JSPS Prize, Japan Society for the Promotion of Science (2018)

Kotaro Hiramatsu

Research Encouragement Prize, Ube Industries Promotion of Science (2017)

Keisuke Goda

Fellow, SPIE (2018)

Ryo Kinegawa

UTokyo1000k Product Idea Contest, University of Tokyo (2017)

Hideharu Mikami

Optical Design Award, Optical Society of Japan (2017)

Cheng Lei

Best Paper Award, Optical Society of America (2017)

Keisuke Goda

WIRED Audi Innovation Award, WIRED Magazine (2016)

Cheng Lei

Best Paper Award, BIOS, SPIE Photonics West (2016)

Keisuke Goda

Distinguished Lectures Award, IEEE Photonics Society (2015)

Keisuke Goda

Young Scientist Award, MEXT, Government of Japan (2014)

Join Us

At Goda Lab, we encourage skilled researchers from all universities and fields to apply, as well as researchers from companies or governments. We offer various career opportunities, including degree and non-degree programs, as well as both short-term and long-term options. If you are interested in joining Goda Lab, please send an e-mail and a copy of your CV to Prof. Goda.

Undergraduate Programs

The Global Science Course is available to international students who are interested in transferring to the University of Tokyo for undergraduate degrees.

Graduate Programs

A few different graduate programs for both Master's and doctoral degrees are available to domestic and international students. Financial support is also available.

Internship Programs

Several different internship programs are available to international students who need financial support to spend summer or longer times with us.

Visiting Scholar Programs

Both short-term (<3 months) and long-term (>1 year) visiting scholar programs are offered by JSPS, CSC, RSC, Marie Curie Foundation, etc.

Open Positions

Goda Lab welcomes applications from researchers who are interested in working with us as postdoctoral researchers or research assistant professors.

Startups

Goda Lab's technologies have been spun off into innovative startups.

CYBO

AI-based cell sorters, intelligent 3D microscopes for digital pathology, and more

LucasLand

Wearable chemical sensors, point-of-care biosensors, and more

FlyWorks

Fast, accurate, low-cost drug discovery based on Drosophila flies

Contact Us

Our Address

7-3-1 Hongo, Bunkyo City
East Chemistry Building, Room 213
The University of Tokyo
Tokyo 113-0033, Japan

Email Us

Keisuke Goda (Professor)
goda@chem.s.u-tokyo.ac.jp
Naoko Kawai (Administrative Assistant)
kawai-n@g.ecc.u-tokyo.ac.jp

Call Us

Prof. Goda's Office
+81-3-5841-4329
Staff Room
+81-3-5841-7649