ミッション
合田研究室のミッションは、ルイ・パスツールの名言「Chance (serendipity) favors the prepared mind(偶然は心の準備が出来ている者を好む)」を実現する「セレンディピティを可能にする技術」を創出することです。具体的には、光量子科学、ナノテクノロジー、マイクロ流体化学、データサイエンスなどを融合して、分子イメージングや分光学のための新しいツールを開発し、それを使って未知の現象を発見し、メカニズムを解明し、科学、産業、医療への新しい応用を開拓することを目的としています。物理・化学を基礎としながらも、理論、実験、計算を最大限に活用し、重要課題に取り組んでいます。合田研究室のもう一つの重要な使命は、21世紀を担うグローバルリーダーを輩出することです。合田研究室は、国際的・学際的な研究環境とフラットな人間関係をサポートし、大学や企業を問わず、あらゆる分野の優秀な学生・研究者を常に募集しています。
ジャーナル論文数
ベンチャー企業数
大学教員輩出数
受賞数

合田 圭介
科学者、エンジニア、教育者、起業家
東京大学大学院理学系研究科化学専攻・教授、UCLA工学部生体工学科・非常勤教授、武漢大学工業化学研究院・非常勤教授。2001年にカリフォルニア大学バークレー校理学部物理学科を卒業(首席)。2007年にマサチューセッツ工科大学大学院理学部物理学科博士課程を修了(理学博士)。マサチューセッツ工科大学では、重力波の検出で2017年ノーベル物理学賞を受賞したLIGOグループで量子増強技術の開発に従事。2007年、カリフォルニア工科大学に短期滞在した後、カリフォルニア大学ロサンゼルス校工学部電気工学科に博士研究員・プログラムマネージャーとして、レーザーを用いた超高速イメージングと超高速分光法、マイクロ流体バイオテクノロジーの研究に従事。2012年、東京大学大学院理学系研究科化学専攻に教授として就任。現在は、様々な手法を融合することでセレンディピティを可能にする技術の開発を推進中。これまでに300近くの学術論文を発表、30以上の特許を出願し、4つのベンチャー企業を創業。日本学士院学術奨励賞、日本学術振興会賞、SPIE Biophotonics Technology Innovator Award、市村学術賞、文部科学大臣表彰科学技術賞、Philipp Franz von Siebold Awardなど30以上の賞を受賞。多数のグローバルリーダーの育成・輩出に貢献。
研究概要
合田研究室のミッションは、ルイ・パスツールの名言「Chance (serendipity) favors the prepared mind(偶然は心の準備が出来ている者を好む)」を実現する「セレンディピティを可能にする技術」を創出することです。具体的には、光量子科学、ナノテクノロジー、マイクロ流体化学、データサイエンスなどを融合して、分子イメージングや分光学のための新しいツールを開発し、それを使って未知の現象を発見し、メカニズムを解明し、科学、産業、医療への新しい応用を開拓することを目的としています。物理・化学を基礎としながらも、理論、実験、計算を最大限に活用し、重要課題に取り組んでいます。現在、セレンディピティラボで、セレンディピティを実現する技術のグローバルオープンイノベーションを実施中です。以下は、現在実施中の合田研究室の研究の一覧ですが、これに限定されるものではありません。
メンバー
合田研究室は、意欲と才能にあふれたメンバー(准教授、助教、特任研究員、事務補佐員、技術補佐員、大学院生、学部生、客員研究員、インターンなど)で構成されています。合田研究室は、科学的探求において主導的な役割を果たし、世界に大きなインパクトを与えることに関心がある、意欲的な学生・研究者を常時募集しています。他大学と他分野(物理学、生物学、情報科学、数学、電気工学、機械工学、生体工学、化学工学など)の学生・研究者を歓迎します。合田研究室に興味のある方は、こちらをご覧ください。

菅野 寛志
特任助教
中川 悠太 (Yoda)
JSPS特別研究員
河井 直子
学術支援職員
牛島 岐子
学術支援職員
太田 忠孝
学術支援職員
瀬原 麻有
技術補佐員
上野 俊之介
大学院生(博士課程)
唐 旭科 (Cohen/啓吾)
大学院生(博士課程)
西山 諒 (Ryan)
大学院生(博士課程)
林 実加
大学院生(博士課程)
張 晨祺 (菜奈)
大学院生(博士課程)
中尾 龍二 (Romeo)
大学院生(博士課程)
陈 俊宇 (純一)
大学院生(博士課程)
邓 云杰 (Jacey/雲美)
大学院生(博士課程)
田村 徹 (Ted)
大学院生(博士課程)
董 俊余 (城)
大学院生(修士課程)
趙 雅祺 (凪子)
大学院生(修士課程)
张 鸿骞 (Sophy/弘美)
大学院生(修士課程)
汪 恵東 (隼人)
大学院生(修士課程)
駱 迎東 (陽平)
大学院生(修士課程)
李 凡 (冬樹)
大学院生(修士課程)
秋田 潤 (John)
大学院生(修士課程)
丸見 真智子 (Marion)
大学院生(修士課程)
藤本 雄資 (Yona)
大学院生(修士課程)
小林 飛翔 (Todd)
大学院生(修士課程)
王 瀚青 (良多)
大学院生(修士課程)
孔 垂铭 (Aaron)
大学院生(修士課程)
長坂 柚葵 (Emma)
大学院生(修士課程)
古屋 圭惟 (Kevin)
大学院生(修士課程)
関根 悠介 (Samuel)
大学院生(修士課程)
BICER Omer Faruk
大学院生(修士課程)
王 君成
大学院生(修士課程)
松岡 直樹
大学院生(修士課程)
姜 雨萌 (優美)
大学院生(修士課程)
高田 祐吾
学部生
金澤 颯飛
学部生
賀 智愷 (承太郎)
研究生
胡 成浪 (Chase)
研究生
張 雅雯 (唯)
研究生
GUO Hongwei
客員研究員
CHENG Zhenzhou
客員研究員
LEI Cheng
客員研究員
XIAO Tinghui (Tim)
客員研究員
YU Qian (剣心)
客員研究員
NAN Haijiao
客員研究員論文実績
合田研究室は幅広い領域(科学、産業、医療)で影響力のある革新的技術の開発及び発見を行ってきました。以下は、合田研究室が最近発表した代表的ジャーナル論文のリストです。合田研究室の全論文リスト(合田教授が東京大学に着任する前の旧論文も含む)はこちら及び下部からご覧いただけます。
1.
W.
Peterson, K. Hiramatsu, and K. Goda, “The marriage of
coherent Raman scattering imaging and advanced computational tools”, Light:
Science & Applications 12, 113 (2023)
2.
C.
Zhang, M. Herbig, Y. Zhou, M. Nishikawa, M. Shifat-E-Rabbi,
H. Kanno, R. Yang, Y. Ibayashi, T. Xiao, G. K. Rohde,
M. Sato, S. Kodera, M. Daimon, Y. Yatomi, and K.
Goda, “Real-time
intelligent classification of COVID-19 and thrombosis via massive image-based
analysis of platelet aggregates”, Cytometry Part A
doi.org/10.1002/cyto.a.24721 (2023)
3.
R. Kinegawa, J. Gala de Pablo, Y. Wang, K. Hiramatsu, and K.
Goda, “Label-free
multiphoton imaging flow cytometry”, Cytometry Part A
doi.org/10.1002/cyto.a.24723 (2023)
4.
R. Li,
Y. Weng, S. Lin, C. Wei, L. Mei, S. Wei, Y. Yao, D. Wang, K. Goda, and C. Lei,
“All-optical
Fourier-domain-compassed time-stretch imaging with low-pass filtering”, ACS Photonics
doi.org/10.1021/acsphotonics.2c01708 (2023)
5.
R.
Nishiyama, K. Hiramatsu, S. Kawamura, K. Dodo, K. Furuya, J. Gala de Pablo, S.
Takizawa, W. Min, M. Sodeoka, and K. Goda, “Color-scalable
flow cytometry with Raman tags”,
PNAS Nexus 2, 1 (2023)
6.
J. Gala
de Pablo, M. Lindley, K. Hiramatsu, A. Isozaki, and K. Goda, “Label-free
live microalgal starch screening via Raman flow cytometry”, Algal Research 70, 102993 (2023)
7.
H. Duan,
Y. Wang, S. Tang, T. Xiao, K. Goda, and M. Li, “A
CRISPR-Cas12a powered electrochemical sensor based on gold nanoparticles and
MXene composite for enhanced nucleic acid detection”, Sensors and Actuators B: Chemical 380,
133342 (2023)
8.
H.
Matsumura, L. T-W Shen, A. Isozaki, H. Mikami, D. Yuan, T. Miura, N. Nitta, Y.
Kondo, T. Mori, Y. Kusumoto, M. Nishikawa, A. Yasumoto,
M. Sonoshita, Y. Yatomi, K.
Goda, and S. Matsusaka, “Virtual-freezing
fluorescence imaging flow cytometry with 5-aminolevulinic acid stimulation and
antibody labeling for detecting all forms of circulating tumor cells”, Lab on a Chip 23, 1561 (2023)
9.
Y. Kitahama, P. M. Pancorbo, H. Segawa, M. Marumi,
T. Xiao, K. Hiramatsu, W. Yang, and K. Goda, “Place
& Play SERS: sample collection and preparation-free surface-enhanced Raman
spectroscopy”, Analytical
Methods 15, 1028 (2023)
10.
Y. Weng,
H. Shen, L. Mei, L. Liu, Y. Yao, R. Li, S. Wei, X. Ruan, D. Wang, Y. Wei, Y.
Deng, Y. Zhou, T. Xiao, K. Goda, S. Liu, F. Zhou, and C. Lei, “Typing
of acute leukemia by intelligent optical time-stretch imaging flow cytometry”, Lab on a Chip 23, 1703 (2023)
11.
S.
Takizawa, K. Hiramatsu, M. Lindley, J. Gala de Pablo, S. Ono, and K. Goda, “High-speed
hyperspectral imaging enabled by compressed sensing in time domain”, Advanced Photonics Nexus 2, 026008 (2023)
12.
K. Chen,
X. Tang, B. Jia, C. Chao, J. Hou, L. Dong, Y. Wei, T. Xiao, K. Goda, and L.
Guo, “Graphene
oxide bulk material reinforced by heterophase platelets with multiscale
interface crosslinking”, Nature Materials 21, 1121 (2022)
13.
M.
Herbig, A. Isozaki, D. Di Carlo, J. Guck, N. Nitta, H. Shintaku, A. Wu, I.
Nikaido, S. Kamikawaji, E. Suyama, R. Damoiseaux, and K. Goda, “Best
practices for reporting throughput in biomedical research”, Nature Methods 19, 633 (2022)
14.
W.
Peterson, J. Gala de Pablo, M. Lindley, K. Hiramatsu, and K. Goda, “Ultrafast
impulsive Raman spectroscopy across the THz-fingerprint region”, Advanced Photonics 4, 016003 (2022)
15.
L. Liu,
P. M. Pancorbo, T. Xiao, S. Noguchi, M. Marumi, H.
Segawa, S. Karhadkar, J. Gala de Pablo, K. Hiramatsu,
Y. Kitahama, T. Itoh, J. Qu, K. Takei, and K. Goda, “Highly
scalable, wearable surface-enhanced Raman spectroscopy”, Advanced Optical Materials 10,
2200054 (2022)
16.
K.
Hiramatsu, T. Tajima, and K. Goda, “Ultrafast,
dual-band coherent Raman spectroscopy without ultrashort pulses”, ACS Photonics 9, 3522 (2022)
17.
M.
Lindley, J. Gala de Pablo, W. Peterson, A. Isozaki, K. Hiramatsu, K. Goda, “High-throughput
Raman-activated cell sorting in the fingerprint region”, Advanced Materials Technologies 7,
2102567 (2022)
18.
Y. Deng,
H. M. Tay, Y. Zhou, X. Fei, X. Tang, M. Nishikawa, Y. Yatomi,
H. W. Hou, T. Xiao, and K. Goda, “Studying
the efficacy of antiplatelet drugs on atherosclerosis by optofluidic imaging on
a chip”, Lab
on a Chip 23, 410 (2022)
19.
K.
Huang, H. Matsumura, Y. Zhao, M. Herbig, D. Yuan, Y. Mineharu,
J. Harmon, J. Findinier, M. Yamagishi, S. Ohnuki, N. Nitta, A. Grossman, Y. Ohya,
H. Mikami, A. Isozaki, and K. Goda, “Deep
imaging flow cytometry”, Lab on a Chip 22, 876 (2022)
20.
Y. Deng,
J. A. Duque, C. Su, Y. Zhou, M. Nishikawa, T. Xiao,
Y. Yatomi, H. W. Hou, and K. Goda, “Understanding
stenosis-induced platelet aggregation on a chip by high-speed optical imaging”, Sensors and Actuators B: Chemical
356, 131318 (2022)
21.
Y. Zhao,
A. Isozaki, M. Herbig, M. Hayashi, K. Hiramatsu, S. Yamazaki, N. Kondo, S. Ohnuki, Y. Ohya, N. Nitta, and K.
Goda, “Intelligent
sort-timing prediction for image-activated cell sorting”, Cytometry Part A 103, 88 (2022)
22.
Y. Zhou,
M. Nishikawa, H. Kanno, R. Yang, Y. Ibayashi, T.
Xiao, W. Peterson, N. Nitta, S. Miyata, Y. Kanthi, G. K. Rohde, K. Moriya, Y. Yatomi, and K. Goda, “Long-term
effects of Pfizer-BioNTech COVID-19 vaccinations on platelets”, Cytometry Part A doi.org/10.1002/cyto.a.24677
(2022)
23.
J.
Harmon, J. Findinier, N. T. Ishii, M. Herbig, A.
Isozaki, A. Grossman, and K. Goda, “Intelligent
image-activated cell sorting by mitochondrial relocation”, Cytometry Part A 101, 1027 (2022)
24.
P. M.
Pancorbo, H. Zhang, X. Yu, T. Xiao, and K. Goda, “Metal-free
SERS: where we are now, where we are heading”, Europhysics
Letters 136, 34001 (2022)
25.
D. Wang,
X. Yuang, Y. Weng, S. Wei, K. Goda, S. Liu, and C.
Lei, “Ultrafast
imaging for uncovering laser-material interaction dynamics”, International Journal of Mechanical
System Dynamics 2, 65 (2022)
26.
Y. Zhou,
H. Kanno, M. Nishikawa, T. Xiao, K. Moriya, Y. Yatomi,
and K. Goda, “Analysis
of platelet aggregation by optofluidic imaging”, Journal of the Imaging Society of Japan
61, 588 (2022)
27.
H.
Kanno, M. Nishikawa, Y. Zhou, T. Xiao, T. Suzuki, Y. Ibayashi,
J. Harmon, S. Takizawa, K. Hiramatsu, N. Nitta, R. Kameyama, W. Peterson, J.
Takiguchi, M. Shifat-E-Rabbi, Y. Zhuang, X. Yin, A.
H. M. Rubaiyat, Y. Deng, H. Zhang, S. Miyata, G. K. Rohde, W. Iwasaki, Y. Yatomi, and K. Goda, “Analyzing circulating platelet aggregates
in patients with COVID-19 by massive image-based single-cell profiling”, 化学とマイクロ・ナノシステム学会誌 21, 1 (2022)
28.
K. Goda,
“計画的セレンディピティが医学・創薬を革新する!”, 医学のあゆみ 282, 23252 (2022)
29.
K.
Hiramatsu and K. Goda, “先端光技術で藻類バイオスクリーニング”, 遺伝 76, 450 (2022)
30.
M.
Nishikawa, H. Kanno, Y. Zhou, T. Xiao, T. Suzuki, Y. Ibayashi,
J. Harmon, S. Takizawa, K. Hiramatsu, N. Nitta, R. Kameyama, W. Peterson, J.
Takiguchi, M. Shifat-E-Rabbi, Y. Zhuang, X. Yin, A.
H. M. Rubaiyat, Y. Deng, H. Zhang, S. Miyata, G. K. Rohde, W. Iwasaki, Y. Yatomi, and K. Goda, “Massive
image-based single-cell profiling reveals high levels of circulating platelet
aggregates in patients with COVID-19”, Nature Communications 12, 7135 (2021)
31.
H.
Koide, A. Okishima, Y. Hoshino, Y. Kamon, K.
Yoshimatsu, K. Saito, I. Yamauchi, S. Ariizumi, Y.
Zhou, T. Xiao, K. Goda, N. Oku, T. Asai, and K. J. Shea, “Synthetic
hydrogel nanoparticles for sepsis therapy”, Nature Communications 12, 5552
(2021)
32.
T. Xiao,
Z. Cheng, Z. Luo, A. Isozaki, K. Hiramatsu, T. Itoh, M. Nomura, S. Iwamoto, and
K. Goda, “All-dielectric
chiral-field-enhanced Raman optical activity”, Nature
Communications 12, 3062 (2021)
33.
J. Gala
de Pablo, M. Lindley, K. Hiramatsu, and K. Goda, “High-throughput
Raman flow cytometry and beyond”, Accounts of Chemical Research 54,
2132 (2021)
34.
P.
Cheng, X. Tian, W. Tang, J. Cheng, J. Bao, H. Wang, S. Zheng, Y. Wang, X. Wei,
T. Chen, H. Feng, T. Xue, K. Goda, and H. He, “Direct
control of store-operated calcium channels by ultrafast laser”, Cell
Research 31, 758 (2021)
35.
Y. Zhou,
A. Isozaki, A. Yasumoto, T. Xiao, Y. Yatomi, C. Lei, and K. Goda, “Intelligent platelet
morphometry”, Trends in Biotechnology 39, 978 (2021)
36.
K. C. M.
Lee, J. Guck, K. Goda, and K. K. Tsia, “Deep
biophysical cytometry: prospects and challenges”, Trends in Biotechnology 39, 1249 (2021)
37.
R.
Kameyama, S. Takizawa, K. Hiramatsu, and K. Goda, “Dual-comb
coherent Raman spectroscopy with near 100% duty cycle”, ACS
Photonics 8, 975 (2021)
38.
M. Xu,
D. Yuan, S. Yan, C. Lei, K. Hiramatsu, J. Harmon, Y. Zhou, M. H. Loo, T. Hasunuma, A. Isozaki, and K. Goda, “Morphological
indicator of Euglena gracilis with a
high heavy metal removal efficiency”, Environmental
Science and Technology 55, 7880 (2021)
39.
P. C.
McCann, K. Hiramatsu, and K. Goda, “Highly
sensitive low-frequency time-domain Raman spectroscopy via
fluorescence-encoding”, Journal of Physical Chemistry Letters 12, 7859 (2021)
40.
Y.
Nakagawa, S. Ohnuki, N. Kondo, K. Itto, F. Ghanegolmohammadi, A. Isozaki, Y. Ohya,
and K. Goda, “Are
droplets really suitable for single-cell analysis? A case study on yeast in
droplets”, Lab
on a Chip 21, 3793 (2021)
41.
R. Bekdash, J. R. Quejada, S. Ueno,
F. Kawano, K. Morikawa, U. Mahesh, R. Avula, E. Wan, S. L. Lee, K. Nakanishi,
A. Chalan, T. Lee, R. Liu, S. Homma, S. O. Marx, K. Goda, and M. Yazawa, “GEM-IL:
a highly responsive fluorescent lactate indicator”, Cell
Reports Methods 1, 100092 (2021)
42.
M. H.
Loo, Y. Nakagawa, A. Isozaki, and K. Goda, “High-throughput
sorting of nanoliter droplets enabled by a sequentially addressable
dielectrophoretic array”, Electrophoresis 43, 477 (2021)
43.
M.
Lindley, J. Gala de Pablo, R. Kinegawa, K. Hiramatsu,
and K. Goda, “Highly
sensitive Fourier-transform coherent anti-Stokes Raman scattering spectroscopy
via genetic algorithm pulse shaping”, Optics Letters 46, 4320 (2021)
44.
A.
Isozaki, D. Huang, Y. Nakagawa, and K. Goda, “Dual
sequentially addressable dielectrophoretic array for high-throughput, scalable,
multiplexed droplet sorting”, Microfluidics and Nanofluidics 25, 32 (2021)
45.
M. Li,
H. Liu, S. Zhuang, and K. Goda, “Droplet
flow cytometry for single-cell analysis”, RSC Advances 11, 20944 (2021)
46.
J. P.
Houston, K. Goda, and A. Filby, “CYTO Virtual”, Cytometry Part A 99, 127 (2021)
47.
K. Goda,
“科学の成長モデルの変化と今後の展望”, 光学 50, 216 (2021)
48.
A.
Isozaki, N. Nitta, T. Sugimura, and K. Goda, “画像活性セルソーター:画像情報に基づく生きた細胞の高速分取法”, 実験医学増刊 39, 198 (2021)
49.
Y. Zhou,
H. Kanno, T. Xiao, R. Shakhmatov, Y. Ibayashi, M. Nishikawa, Y. Yatomi,
and K. Goda, “COVID-19の診断補助に向けたタイムストレッチ・イメージング”, レーザー研究 49, 228 (2021)
50.
K.
Hiramatsu and K. Goda, “バイオイメージング極秘ファイル:展望”, Optronics 12 (2021)
51.
K. Goda,
T. Itoh, and T. Xiao, “多孔性炭素ナノワイヤを用いた金属フリーの表面増強ラマン分光法”, 光技術動向調査報告書 (2021)
52.
K. Tsia
and K. Goda, “High-speed
biomedical imaging and spectroscopy VI”, SPIE Proceedings 11654 (2021)
53.
N. Chen,
T. Xiao, Z. Luo, Y. Kitahama, K.
Hiramatsu, N. Kishimoto, T. Ito, Z. Cheng, and K. Goda, “Porous carbon nanowire array for
surface-enhanced Raman spectroscopy”, Nature Communications 11, 4772 (2020)
54.
N.
Nitta, T. Iino, A. Isozaki, M. Yamagishi, Y. Kitahama,
S. Sakuma, Y. Suzuki, H. Tezuka, M. Oikawa, F. Arai, T. Asai, D. Deng, H.
Fukuzawa, M. Hase, T. Hasunuma, T. Hayakawa, K. Hiraki,
K. Hiramatsu, Y. Hoshino, M. Inaba, Y. Inoue, T. Ito, M. Kajikawa, H. Karakawa, Y. Kasai, Y. Kato, H. Kobayashi, C. Lei, S.
Matsusaka, H. Mikami, A. Nakagawa, K. Numata, T. Ota, T. Sekiya, K. Shiba, Y. Shirasaki, N. Suzuki, S. Tanaka, S. Ueno, H. Watarai, T. Yamano, M. Yazawa, Y. Yonamine, D. Di Carlo, Y.
Hosokawa, S. Uemura, T. Sugimura, Y. Ozeki, and K. Goda, “Raman
image-activated cell sorting”, Nature
Communications 11, 3452 (2020)
55.
H.
Mikami, M. Kawaguchi, C.-J. Huang, H. Matsumura, T. Sugimura, K. Huang, C. Lei,
S. Ueno, T. Miura, T. Ito, K. Nagasawa, T. Maeno, H. Watarai,
M. Yamagishi, S. Uemura, S. Ohnuki, Y. Ohya, H. Kurokawa, S. Matsusaka, C.-W. Sun, Y. Ozeki, and
K. Goda, “Virtual-freezing
fluorescence imaging flow cytometry”, Nature
Communications 11, 1162 (2020)
56.
A.
Isozaki, Y. Shibata, N. Tanaka, D. L. Setyaningrum,
Y. Nakagawa, M. H. Loo, J. Park, Y. Shirasaki, D.
Huang, C. Riche, H. Tsoi, T. Ota, H. Miwa, Y. Kanda, T. Ito, K. Yamada, O.
Iwata, K. Suzuki, Y. Kato, T. Hasunuma, S. Matsusaka,
M. Yamagishi, M. Yazawa, S. Uemura, K. Nagasawa, H. Watarai,
D. Di Carlo, and K. Goda, “Sequentially
addressable dielectrophoretic array for high-throughput sorting of large-volume
biological compartments”, Science Advances 6,
eaba6712 (2020)
57.
Y. Zhou,
A. Yasumoto, C. Lei, C.-J. Huang, H. Kobayashi, Y.
Wu, S. Yan, C.-W. Sun, Y. Yatomi, and K. Goda, “Intelligent
classification of platelet aggregates by agonist type”, eLife 9, e52938 (2020)
58.
A.
Isozaki, J. Harmon, Y. Zhou, S. Li, Y. Nakagawa, M. Hayashi, H. Mikami, C. Lei,
and K. Goda, “AI
on a chip”, Lab on a Chip 20, 3074 (2020)
59.
A.
Isozaki, H. Mikami, H. Tezuka, H. Matsumura, K. Huang, M. Akamine, K.
Hiramatsu, T. Iino, T. Ito, H. Karakawa, Y. Kasai, Y.
Li, Y. Nakagawa, S. Ohnuki, T. Ota, Y. Qian, S.
Sakuma, T. Sekiya, Y. Shirasaki, N. Suzuki, E. Tayyabi, T. Wakamiya, M. Xu, M. Yamagishi, H. Yan, Q. Yu,
S. Yan, D. Yuan, W. Zhang, Y. Zhao, F. Arai, R. E. Campbell, C. Danelon, D. Di Carlo, K. Hiraki, Y. Hoshino, Y. Hosokawa,
M. Inaba, A. Nakagawa, Y. Ohya, M. Oikawa, S. Uemura,
Y. Ozeki, T. Sugimura, N. Nitta, and K. Goda, “Intelligent
image-activated cell sorting 2.0”, Lab
on a Chip 20, 2263 (2020)
60.
H. Yan,
Y. Wu, Y. Zhou, M. Xu, P. Paie, C. Lei, S. Yan, and K. Goda, “Virtual
optofluidic time-stretch quantitative phase imaging”, APL
Photonics 5, 046103 (2020)
61.
K. Goda,
B. Jalali, C. Lei G. Situ, and P. Westbrook, “AI boosts photonics
and vice versa”, APL Photonics 5, 070401 (2020)
62.
K. Goda,
G. Popescu, K. Tsia, D. Psaltis, “Computational optical
imaging goes viral”, APL Photonics 5, 030401 (2020)
63.
K.
Hiramatsu, K. Yamada, M. Lindley, K. Suzuki, and K. Goda, “Large-scale
label-free single-cell analysis of paramylon in Euglena gracilis by high-throughput broadband Raman flow cytometry”, Biomedical
Optics Express 11, 1752 (2020)
64.
S.
Takizawa, K. Hiramatsu, and K. Goda, “Compressed
time-domain coherent Raman spectroscopy with real-time random sampling”, Vibrational
Spectroscopy 107, 103042 (2020)
65.
H.
Kanno, H. Mikami, and K. Goda, “High-speed
single-pixel imaging by frequency-time-division multiplexing”, Optics
Letters 45, 2339 (2020)
66.
Y. Weng,
G. Wu, L. Mei, Q. Wang, K. Goda, S. Liu, and C. Lei, “Temporally
interleaved optical time-stretch imaging”, Optics
Letters 45, 2387 (2020)
67.
Y. Wu,
Y. Zhou, C.-J. Huang, H. Kobayashi, S. Yan, Y. Ozeki, Y. Wu, C.-W. Sun, A. Yasumoto, Y. Yatomi, C. Lei, and
K. Goda, “Intelligent
frequency-shifted optofluidic time-stretch quantitative phase imaging”, Optics
Express 28, 519 (2020)
68.
T.
Saiki, T. Hosobata, Y. Kono, M. Takeda, A. Ishijima, M. Tamamitsu, Y.
Kitagawa, K. Goda, S. Morita, S. Ozaki, K. Motohara,
Y. Yamagata, K. Nakagawa, and I. Sakuma, “Sequentially
timed all-optical mapping photography boosted by a branched 4f system with a
slicing mirror”, Optics Express 28, 31914 (2020)
69.
Y. Weng,
L. Mei, G. Wu, S. Chen, B. Zhan, K. Goda, S. Liu, and C. Lei, “Analysis
of signal detection configurations in optical time-stretch imaging”, Optics Express 28, 29272 (2020)
70.
Y.
Yonamine, K. Hiramatsu, T. Ideguchi, T. Ito, T.
Fujiwara, Y. Miura, K. Goda, and Y. Hoshino, “Spatiotemporal
monitoring of intracellular metabolic dynamics by resonance Raman microscopy
with stable isotope labeling”, RSC
Advances 10, 16679 (2020)
71.
J.
Harmon, H. Mikami, H. Kanno, T. Ito, and K. Goda, “Accurate
classification of microalgae by intelligent frequency-division-multiplexed
fluorescence imaging flow cytometry”, OSA
Continuum 3, 430 (2020)
72.
K. Goda,
“Quantum
light and quantum life: understanding quantum-biological phenomena by quantum
technology”, Optronics
8, 54 (2020)
73.
A.
Nakagawa, N. Nitta, T. Sugimura, A. Isozaki, Y. Ozeki, and K. Goda, “インテリジェント画像活性細胞選抜法 ―医療・生命科学分野への展開”, 医学のあゆみ 273, 20524 (2020)
74.
K. Tsia
and K. Goda, “High-speed
biomedical imaging and spectroscopy V”, SPIE Proceedings 11250 (2020)
75.
A.
Isozaki, H. Mikami, K. Hiramatsu, S. Sakuma, Y. Kasai, T. Iino, T. Yamano, A. Yasumoto, Y. Oguchi, N. Suzuki, Y. Shirasaki,
T. Endo, T. Ito, K. Hiraki, M. Yamada, S. Matsusaka, T. Hayakawa, H. Fukuzawa,
Y. Yatomi, F. Arai, D. Di Carlo, A. Nakagawa, Y.
Hoshino, Y. Hosokawa, S. Uemura, T. Sugimura, Y. Ozeki, N. Nitta, and K. Goda,
“A
practical guide to intelligent image-activated cell sorting”, Nature
Protocols 14, 2370 (2019)
76.
K.
Hiramatsu, T. Ideguchi, Y. Yonamine, S. Lee, Y. Luo,
K. Hashimoto, T. Ito, M. Hase, J. Park, Y. Kasai, S. Sakuma, T. Hayakawa, F.
Arai, Y. Hoshino, and K. Goda, “High-throughput
label-free molecular fingerprinting flow cytometry”, Science
Advances 5, eaau0241 (2019)
77.
Y.
Suzuki, K. Kobayashi, Y. Wakisaka, D. Deng, Y. Fujiwaki, H. Liu, S. Tanaka, C.-J. Huang, C. Lei, S. Lee,
A. Isozaki, Y. Kasai, T. Hayakawa, S. Sakuma, F. Arai, K. Koizumi, H. Tezuka,
M. Inaba, K. Hiraki, T. Ito, M. Hase, S. Matsusaka, K. Shiba, K. Suga, M.
Nishikawa, M. Jona, Y. Yatomi,
Y. Yaxiaer, Y. Tanaka, T. Sugimura, N. Nitta, K.
Goda, and Y. Ozeki, “Label-free
chemical imaging flow cytometry by high-speed multicolor stimulated Raman
scattering”, PNAS 116, 15842 (2019)
78.
M.
Lindley, K. Hiramatsu, H. Nomoto, F. Shibata, T. Takeshita, S. Kawano, and K.
Goda, “Ultrafast
simultaneous Raman-fluorescence spectroscopy”, Analytical
Chemistry 91, 15563 (2019)
79.
A. Cossarizza et al, “Guidelines
for the use of flow cytometry and cell sorting in immunological studies (second
edition)”, European Journal of Immunology 49, 1457
(2019)
80.
H.
Kobayashi, C. Lei, Y. Wu, C.-J. Huang, A. Yasumoto,
M. Jona, W. Li, Y. Yaxiaer,
Y. Jiang, B. Guo, C.-W. Sun, Y. Tanaka, M. Yamada, Y. Yatomi,
and K. Goda, “Intelligent
whole-blood imaging flow cytometry for simple, rapid, cost-effective
drug-susceptibility testing of leukemia”, Lab
on a Chip 19, 2688 (2019)
81.
T. Iino,
S. W. Lee, K. Okano, H. Hagihara, T. Yamakawa, H. Z. Yi, T. Maeno, Y. Kasai, T.
Hayakawa, S. Sakuma, F. Arai, K. Goda, and Y. Hosokawa, “High-speed
microparticle isolation unlimited by Poisson statistics”, Lab
on a Chip 19, 2669 (2019)
82.
K. Goda,
“Biophotonics
and beyond”, APL Photonics 4, 050401 (2019)
83.
H.
Kanno, H. Mikami, Y. Kaya, Y. Ozeki, and K. Goda, “Simple,
stable, compact implementation of frequency-division-multiplexed microscopy by
inline interferometry“, Optics Letters 44, 467 (2019)
84.
W.
Peterson, K. Hiramatsu, and K. Goda, “Sagnac-enhanced
impulsive stimulated Raman scattering for highly sensitive low-frequency Raman
spectroscopy”, Optics Letters 44, 5282 (2019)
85.
Y. Yalikun, N. Ota, B. Guo, T. Tang, Y. Zhou, C. Lei, H.
Kobayashi, Y. Hosokawa, M. Li, H. E. Munoz, D. Di Carlo, K. Goda, and Y. Tanaka,
“Effect
of flow-induced microfluidic chip deformation on imaging flow cytometry”, Cytometry
Part A 97, 909 (2019)
86.
F.
Zhang, C. Lei, C.-J. Huang, H. Kobayashi, C.-W. Sun, and K. Goda, “Intelligent
image de-blurring for imaging flow cytometry”, Cytometry
Part A 95, 549 (2019)
87.
K. Goda,
N. Nitta, and A. Filby, “In
flow cytometry, image is everything”, Cytometry
Part A 95, 475 (2019)
88.
N. Ota,
Y. Yalikun, T. Suzuki, S. Lee, Y. Hosokawa, K. Goda,
and Y. Tanaka, “Enhancement in acoustic focusing of micro
and nanoparticles by thinning a microfluidic device”, Royal
Society Open Science 6, 181776 (2019)
89.
D. Di
Carlo, F. Arai, K. Goda, T. Huang, Y.-H. Lo, N. Nitta, Y. Ozeki, K. Tsia, S.
Uemura, and K. Wong, “Comment
on ghost cytometry”, Science 364, eaav1429 (2019)
90.
R. Kinegawa, K. Hiramatsu, K. Hashimoto, V. R. Badarla, T. Ideguchi, and K.
Goda, “High-speed
broadband Fourier-transform coherent anti-Stokes Raman scattering spectral
microscopy”, Journal of Raman Spectroscopy 50, 1141
(2019)
91.
K. Goda,
“Publicationの危機、解決へリーダーシップを”, Nature
Digest 16, 20 (2019)
92.
K. Hiramatsu
and K. Goda, “高速ラマン分光法を利用した細胞個性を無標識・大規模計測”, Bioscience & Industry 77, 308 (2019)
93.
K. Goda,
“細胞検索エンジンが拓く新世界”, 応用物理 88, 522 (2019)
94. D. Wu, H. Kobayashi, C. Ding, C. Lei, K.
Goda, and M. Ghassemi, “Modeling the biological pathology
continuum with HSIC-regularized Wasserstein auto-encoders”, 32nd Conference on Neural Information
Processing Systems (2019)
95. W. Zhao, C. Lei, H. Huang, K. Goda, and H.
Chen, “A
comparison of image recognition algorithms for cell phenotyping in optofluidic
time-stretch microscopy”, SPIE Photonics Asia, Beijing, China, doi.org/10.1117/12.2537782
(2019)
96. A. Isozaki, H. Mikami, K. Hiramatsu, and K.
Goda, “高速蛍光イメージング・ラマン分光法と生物学・医学への展開”, オプトロニクス 9 (2019)
97.
K. Tsia
and K. Goda, “High-speed
biomedical imaging and spectroscopy IV”, SPIE Proceedings 10889 (2021)
98. A. Isozaki, Y. Nakagawa, M. H. Loo, Y.
Shibata, N. Tanaka, D. L. Setyaningrum, J.-W. Park,
Y. Shirasaki, H. Mikami, S. Uemura, D. Di Carlo, and
K. Goda, “電極アレイを用いた高速液滴分取”, 化学とマイクロ・ナノシステム学会, 18, 33 (2019)
99. N. Nitta, T. Sugimura, A. Isozaki, H. Mikami,
K. Hiraki, S. Sakuma, T. Iino, F. Arai, T. Endo, Y. Fujiwaki,
H. Fukuzawa, M. Hase, T. Hayakawa, K. Hiramatsu, Y. Hoshino, M. Inaba, T. Ito,
H. Karakawa, Y. Kasai, K. Koizumi, S. Lee, C. Lei, M.
Li, T. Maeno, S. Matsusaka, D. Murakami, A. Nakagawa, Y. Oguchi, M. Oikawa, T.
Ota, K. Shiba, H. Shintaku, Y. Shirasaki, K. Suga, Y.
Suzuki, N. Suzuki, Y. Tanaka, H. Tezuka, C. Toyokawa, Y. Yalikun,
M. Yamada, M. Yamagishi, T. Yamano, A. Yasumoto, Y. Yatomi, M. Yazawa, D. Di Carlo, Y. Hosokawa, S. Uemura, Y.
Ozeki, and K. Goda, “Intelligent
image-activated cell sorting“, Cell
175, 266 (2018)
100.
C. Lei,
H. Kobayashi, D. Wu, M. Li, A. Isozaki, A. Yasumoto,
H. Mikami, T. Ito, N. Nitta, T. Sugimura, M. Yamada, Y. Yatomi,
D. Di Carlo, Y. Ozeki, and K. Goda, “High-throughput
imaging flow cytometry by optofluidic time-stretch microscopy“, Nature
Protocols 13, 1603 (2018)
101.
H.
Mikami, J. Harmon, H. Kobayashi, S. Hamad, Y. Wang, O. Iwata, K. Suzuki, T.
Ito, Y. Aisaka, N. Kutsuna, K. Nagasawa, H. Watarai,
Y. Ozeki, and K. Goda, “Ultrafast
confocal fluorescence microscopy beyond the fluorescence lifetime limit“, Optica
5, 117 (2018)
102. M. Li, M. van Zee, C. T. Riche, B. Tofig, S.
Gallaher, S. Merchant, R. Damoiseaux, K. Goda, and D.
Di Carlo, “A
gelatin microdroplet platform for high-throughput sorting of hyperproducing
single-cell-derived microalgal clones“, Small
14, 1803315 (2018)
103.
H.
Mikami, C. Lei, Y. Ozeki, and K. Goda, “High-speed
imaging meets single-cell analysis“, Chem
4, 1 (2018)
104. H. E. Munoz, M. Li, C. T. Riche, N. Nitta, E.
Diebold, J. Lin, K. Owsley, M. Bahr, K. Goda, and D. Di Carlo, “Single-cell
analysis of morphological and metabolic heterogeneity in Euglena gracilis by fluorescence imaging flow cytometry“, Analytical
Chemistry 90, 11280 (2018)
105.
M. Li,
M. van Zee, K. Goda, and D. Di Carlo, “Size-based
sorting of hydrogel droplets using inertial microfluidics“, Lab
on a Chip 18, 2575 (2018)
106.
T. Xiao,
Z. Bao, Z. Cheng, and K. Goda, “Giant
optical activity in an all-dielectric spiral nanoflower“, Small
14, 1800485 (2018)
107.
T.-H.
Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared
high-Q germanium nanocavity“, Photonics Research 43,
2885 (2018)
108.
T.
Miura, H. Mikami, A. Isozaki, T. Ito, Y. Ozeki, and K. Goda, “On-chip
light-sheet fluorescence imaging flow cytometry at a high flow speed of 1 m/s“, Biomedical
Optics Express 9, 3424 (2018)
109.
C. Lei
and K. Goda, “The
complete optical oscilloscope“, Nature
Photonics 12, 190 (2018)
110.
T. Ideguchi, T. Nakamura, S. Takizawa, M. Tamamitsu,
S. Lee, K. Hiramatsu, V. R. Badarla, J. Park, Y.
Kasai, T. Hayakawa, S. Sakuma, F. Arai, and K. Goda, “Microfluidic
single-particle chemical analyzer with dual-comb coherent Raman spectroscopy“, Optics
Letters 43, 4057 (2018)
111.
T. Xiao,
Z. Zhao, W. Zhou, C. Chang, S. Y. Set, M. Takenaka, H. K. Tsang, Z. Cheng, and
K. Goda, “Mid-infrared
high-Q germanium microring resonator“, Optics
Letters 43, 2885 (2018)
112.
C. Lei,
N. Nitta, Y. Ozeki, and K. Goda, “Optofluidic
time-stretch imaging: recent advances“, Optical
Review 25, 464 (2018)
113.
T.
Maeno, T. Uzawa, I. Kono, K. Okano, T. Iino, K. Fukita, O. Iwata, K. Suzuki, T. Ito, K. Goda, and Y.
Hosokawa, “Targeted
delivery of fluorogenic peptide aptamers into live microalgae by femtosecond
laser photoporation at single-cell resolution“, Scientific
Reports 8, 8271 (2018)
114.
K. Goda,
A. Zumbusch, Z. Huang, and Y. Ozeki, “Guest
editorial: Special topic on coherent Raman spectroscopy and imaging“, APL
Photonics 3, 090401 (2018)
115.
Y. Ozeki
and K. Goda, “Opening
a new world by unconventional bioimaging“, Optronics
37, 62 (2018)
116.
C. Lei,
H. Kobayashi, Y. Ozeki, and K. Goda, “Optical
time-stretch imaging for biofuel production, medical diagnostics, and drug
discovery“, Optronics 37, 74 (2018)
117.
H.
Mikami, Y. Ozeki, and K. Goda, “Ultrafast
confocal fluorescence microscopy using telecommunication technology“, Optronics
37, 94 (2018)
118. T. Xiao, Z. Cheng, and K. Goda, “高性能ナノデバイスを実現する螺旋状ナノフラワー“, 化学 74, 45 (2018)
119. K. Goda and N. Nitta, “スーパースター細胞を超高速に発見する“, 理学部ニュース 11, 6 (2018)
120.
K. Tsia
and K. Goda, “High-speed
biomedical imaging and spectroscopy III: toward big data instrumentation and
management”, SPIE
Proceedings 10505 (2018)
121.
C. V.
Hoang, K. Hayashi, Y. Ito, G. Naoki, S. Xi, Z. Cheng, K. Ueno, K. Goda, and H.
Misawa, “Interplay
of hot electrons from localized and propagating plasmons“, Nature
Communications 8, 771 (2017)
122.
Y.
Jiang, C. Lei, A. Yasumoto, T. Ito, B. Guo, H.
Kobayashi, Y. Ozeki, Y. Yatomi, and K. Goda, “Label-free
detection of aggregated platelets in blood by machine-learning-aided optofluidic
time-stretch microscopy“, Lab on a Chip 17, 2426
(2017)
123.
H.
Kobayashi, C. Lei, A. Mao, Y. Jiang, Y. Wu, B. Guo, Y. Ozeki, and K. Goda, “Label-free
detection of cellular drug responses by high-throughput bright-field imaging
and machine learning“, Scientific Reports 7, 12454 (2017)
124.
M. Li,
H. E. Munoz, K. Goda, and D. Di Carlo, “Shape-based
separation of microalga Euglena gracilis using
inertial microfluidics“, Scientific Reports 7,
10802 (2017)
125.
B. Guo,
C. Lei, T. Ito, Y. Yaxiaer, H. Kobayashi, Y. Jiang,
Y. Tanaka, Y. Ozeki, and K. Goda, “High-throughput
label-free single-cell microalgal lipid screening by machine-learning-equipped
optofluidic time-stretch quantitative phase microscopy“, Cytometry
Part A 91, 494 (2017)
126.
K.
Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan
Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with
heterodyne detection“, Optics Letters 42, 4335 (2017)
127.
T.-H.
Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared
germanium photonic crystal cavity“, Optics
Letters 42, 2882 (2017)
128.
J. Kang,
Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M.
Takenaka, H. K. Tsang, and K. Goda, “A
focusing subwavelength grating coupler for mid-infrared suspended membrane Ge
waveguides“, Optics Letters 42, 2094 (2017)
129.
Y.
Yonamine, Y. Suzuki, T. Ito, Y. Miura, K. Goda, Y. Ozeki, and Y. Hoshino, “Monitoring
photosynthetic activity in live microalgal cells by Raman spectroscopy with
deuterium oxide as a tracking probe“, ChemBioChem 18, 2063 (2017)
130.
T.-H.
Xiao, Z. Cheng, and K. Goda, “Graphene-on-silicon
hybrid plasmonic-photonic integrated circuits“, Nanotechnology
28, 245201 (2017)
131.
B. Guo,
C. Lei, Y. Wu, H. Kobayashi, T. Ito, A. Yasumoto, Y. Yaxiaer, S. W. Lee, A. Isozaki, M. Li, Y. Jiang, A. Yasumoto, D. Di Carlo, Y. Tanaka, Y. Yatomi,
Y. Ozeki, and K. Goda, “Optofluidic
time-stretch quantitative phase microscopy“, Methods
136, 116 (2017)
132.
C. Lei,
Y. Wu, A. C. Sankaranarayanan, S. Chang, B. Guo, N. Sasaki, H. Kobayashi, C.
Sun, Y. Ozeki, and K. Goda, “GHz optical
time-stretch microscopy by compressive sensing“, IEEE
Photonics Journal 9, 3900308 (2017)
133.
C. Lei,
Y. Ozeki, and K. Goda, “Large-scale label-free
single-cell analysis by optofluidic time-stretch microscopy and artificial
intelligence“, Japanese Journal of Optics 46, 282
(2017)
134.
Y.
Ozeki, Y. Suzuki, Y. Wakisaka, and K. Goda,
“Single-cell metabolite analysis of Euglena
gracilis with stimulated Raman scattering”, Japanese Journal of Optics 46, 247
(2017)
135.
T. Ideguchi and K. Goda, “Broadband coherent Raman
spectroscopy running at 24,000 spectra per second”, Japanese Journal of Optics 46, 228 (2017)
136.
Y.
Ozeki, Y. Suzuki, Y. Wakisaka, and K. Goda, “誘導ラマン散乱顕微法による生きた微細藻類の1細胞代謝物解析“, Optical
Alliance 28, 11 (2017)
137.
Y. Ozeki
and K. Goda, “微細藻類の高速・無標識・一細胞代謝物イメージング“, Bioscience
& Industry 75, 204 (2017)
138.
K.
Hiramatsu, T. Ideguchi, and K. Goda, “高速無標識バイオイメージングに向けたFourier-transform
CARS法“, Optical
Alliance 28, 48 (2017)
139.
O. Iwata,
K. Yamada, T. Ito, K. Suzuki, Y. Ozeki, and K. Goda, “スーパー微細藻類バイオ燃料の創出に向けた基盤技術“, 生物物理 57, 235 (2017)
140.
Y. Ozeki,
T. Ideguchi, and K. Goda, “高速ラマン計測による生命科学へのアプローチ“, 電気学会誌 137, 768 (2017)
141.
K. Goda,
“2030年のサイエンスと革命前夜”, 理学部ニュース 5, 3 (2017)
142.
M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and
K. Goda, “Ultrafast
broadband Fourier-transform CARS spectroscopy operating at 50,000
spectra/second“, Proceedings of SPIE
doi:10.1117/12.2249726 (2017)
143.
B. Guo,
C. Lei, T. Ito, Y. Ozeki, and K. Goda, “High-throughput
label-free screening of Euglena gracilis
with optofluidic time-stretch quantitative phase microscopy“, Proceedings
of SPIE doi:10.1117/12.2251157 (2017)
144.
Y.
Suzuki, Y. Wakisaka, O. Iwata, A. Nakashima, T. Ito,
M. Hirose, R. Domon, M. Sugawara, N. Tsumura, H. Watarai,
T. Shimobaba, K. Suzuki, K. Goda, and Y. Ozeki, “High-speed
stimulated Raman scattering microscopy for studying the metabolic diversity of
motile Euglena gracilis“, Proceedings
of SPIE doi:10.1117/12.2250455 (2017)
145.
H.
Mikami, J. Harmon, Y. Ozeki, and K. Goda, “High-speed
bioimaging with frequency-division-multiplexed fluorescence confocal microscopy“, Proceedings
of SPIE doi:10.1117/12.2272924 (2017)
146.
Y. Wakisaka, Y. Suzuki, O. Iwata, A. Nakashima, T. Ito, M.
Hirose, R. Domon, M. Sugawara, N. Tsumura, H. Watarai,
T. Shimobaba, K. Suzuki, K. Goda, and Y. Ozeki, “Probing
the metabolic heterogeneity of live Euglena
gracilis with stimulated Raman scattering microscopy“, Nature
Microbiology 1, 16124 (2016)
147.
T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens
mode-locked bidirectional dual-comb ring laser for broadband dual-comb
spectroscopy“, Optica 3, 748 (2016)
148.
K.
Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband
coherent Raman spectroscopy running at 24,000 spectra per second“, Scientific
Reports 6, 21036 (2016)
149.
K.
Yamada, H. Suzuki, T. Takeuchi, Y. Kazama, S. Mitra, T. Abe, K. Goda, K.
Suzuki, and O. Iwata, “Efficient selective breeding of live
oil-rich Euglena gracilis with
fluorescence-activated cell sorting“, Scientific
Reports 6, 26327 (2016)
150.
C. Lei,
B. Guo, Z. Cheng, and K. Goda, “Optical
time-stretch imaging: principles and applications“, Applied
Physics Reviews 3, 011102 (2016)
151.
C. Lei,
T. Ito, M. Ugawa, T. Nozawa, O. Iwata, M. Maki, G.
Okada, H. Kobayashi, X. Sun, P. Tiamsak, N. Tsumura,
K. Suzuki, D. Di Carlo, Y. Ozeki, and K. Goda, “High-throughput
label-free image cytometry and image-based classification of live Euglena gracilis“, Biomedical
Optics Express 7, 2703 (2016)
152.
M. Li,
H. E. Munoz, A. Schmidt, B. Guo, C. Lei, K. Goda, and D. Di Carlo, “Inertial
focusing of ellipsoid Euglena gracilis
cells in a stepped microchannel“, Lab
on a Chip 16, 4458 (2016)
153.
M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K.
Goda, “Ultrafast
broadband Fourier-transform CARS spectroscopy at 50,000 spectra/second enabled
by a scanning Fourier-domain delay line“, Vibrational
Spectroscopy 91, 163 (2016)
154.
B. Guo,
C. Lei, T. Ito, Y. Jiang, Y. Ozeki, and K. Goda, “High-throughput
accurate single-cell screening of Euglena
gracilis with fluorescence-assisted optofluidic time-stretch microscopy“, PLoS ONE 11,
e0166214 (2016)
155.
J.-W.
Park, S. H. Kim, T. Ito, T. Fujii, S. Y. Kim, T. Laurell, S. W. Lee, and K.
Goda, “Acoustofluidic
harvesting of microalgae on a single chip“, Biomicrofluidics 10, 034119 (2016)
156.
A. Phatak,
Z. Cheng, C. Qin, and K. Goda, “Design
of electro-optic modulators based on graphene-on-silicon slot waveguides“, Optics
Letters 41, 2501 (2016)
157.
Z. Cheng
and K. Goda, “Design
of waveguide-integrated graphene devices for photonic gas sensing“, Nanotechnology
27, 505206 (2016)
158.
H.
Mikami, L. Gao, and K. Goda, “Ultrafast
optical imaging technology: principles and applications of emerging methods“, Nanophotonics
5, 98 (2016)
159.
Z.
Cheng, C. Qin, F. Wang, H. He, and K. Goda, “Progress
on mid-IR graphene photonics and biochemical applications“, Frontiers
of Optoelectronics 9, 1 (2016)
160.
C. Lei,
Z. Cheng, and K. Goda, “Cancer detection with high-throughput image cytometry”,
Medical Imaging Technology 34, 68
(2016)
161.
H.
Mikami, C. Lei, Y. Suzuki, Y. Ozeki, and K. Goda, “超高速イメージングで生命科学“, O
plus E 38, 922 (2016)
162.
K.
Hashimoto, T. Ideguchi, and K. Goda, “高速の化学分析が可能に!高速広帯域コヒーレントラマン分光の実現”, 化学 71, 68
(2016)
163.
A. Yazaki,
K. Goda, and B. Jalali, “超高速表面検査を実現する分散融合型暗視野レーザスキャナ”, 画像ラボ 27, 1 (2016)
164.
H.
Mikami and K. Goda, “異分野融合がセレンディピティを引き起こす”, 理学部ニュース 5, 8 (2016)
165.
H. He,
K. Nakagawa, Y. Wang, Y. Hosokawa, and K. Goda, “Mechanism
for microtsunami-induced intercellular mechanosignalling“, Nature
Photonics 9, 623 (2015)
166.
T.
Ishida, T. Sato, T. Ishikawa, M. Oguma, N. Itamura,
K. Goda, N. Sasaki, and H. Fujita, “Time-lapse nanoscopy
of friction in the non-Amontons and non-Coulomb regime“, Nano
Letters 15, 1476 (2015)
167.
M. Ugawa, C. Lei, T. Nozawa, T. Ideguchi,
D. Di Carlo, S. Ota, Y. Ozeki, and K. Goda, “High-throughput
optofluidic particle profiling with morphological and chemical specificity“, Optics
Letters 40, 4803 (2015)
168.
M. Tamamitsu, K. Nakagawa, R. Horisaki,
A. Iwasaki, Y. Oishi, A. Tsukamoto, F. Kannari, I.
Sakuma, and K. Goda, “Design
for sequentially timed all-optical mapping photography with optimum temporal
performance“, Optics Letters 40, 633 (2015)
169.
T.
Suzuki, F. Isa, L. Fujii, K. Hirosawa, K. Nakagawa, K. Goda, I. Sakuma, and F. Kannari, “Sequentially
timed all-optical mapping photography (STAMP) utilizing spectral filtering“, Optics
Express 23, 30512 (2015)
170.
M. Tamamitsu, Y. Kitagawa, K. Nakagawa, R. Horisaki,
Y. Oishi, S. Morita, Y. Yamagata, K. Motohara, and K.
Goda, “Spectrum
slicer for snapshot spectral imaging“, Optical
Engineering 54, 123115 (2015)
171.
K.
Nakagawa, F. Kannari, I. Sakuma, and K. Goda, “Photography
on the femtosecond scale“, Imaging & Microscopy
4, 44 (2015)
172.
M. Ugawa, T. Ideguchi, and K. Goda,
“Ultrafast
spectroscopy and its applications enabled by time-domain Fourier optics“, Review
of Laser Engineering 43, 193 (2015)
173.
K.
Nakagawa and K. Goda, “Sequentially timed all-optical mapping photography for
capturing picosecond-to-femtosecond dynamics”, Journal of Japan Laser Processing Society 22, 225 (2015)
174.
K.
Nakagawa, “STAMP (Sequentially timed all-optical mapping photography) for
observation of ultrafast non-repetitive phenomena”, Review of Laser Engineering 43, 198 (2015)
175.
K.
Nakagawa and K. Goda, “超高速光学撮像法が拓くフロンティア“, 応用物理 84, 409 (2015)
176.
K.
Nakagawa, H. Kobayashi, G. Yu, Y. Wakisaka, T.
Nozawa, and K. Goda, “高速・高分解能ブレインイメージングに向けた技術革新”, Brain
Science Review, クバプロ (2015)
177.
A. Yazaki,
K. Goda, and B. Jalali, “超高速表面検査を実現する分散融合型暗視野レーザスキャナー”, 映像情報メディア学会誌 69, 574 (2015)
178.
K.
Nakagawa and K. Goda, “1兆分の1秒以下の世界を捉える連写撮影法”, 画像ラボ 26, 13 (2015)
179.
K.
Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A.
Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida,
K. Goda, F. Kannari, and I. Sakuma, “Sequentially
timed all-optical mapping photography“, Nature
Photonics 8, 695 (2014)
180.
K.
Hashimoto, H. Mizuno, K. Nakagawa, R. Horisaki, A.
Iwasaki, F. Kannari, I. Sakuma, and K. Goda, “High-speed
multispectral videography with a periscope array in a spectral shaper“, Optics
Letters 39, 6942 (2014)
181.
A. Yazaki,
C. Kim, J. Chan, A. Mahjoubfar, K. Goda, M. Watanabe,
and B. Jalali, “Ultrafast
dark-field surface inspection with hybrid-dispersion laser scanning“, Applied
Physics Letters 104, 251106 (2014)
182.
M. Ugawa, H. Kobayashi, and K. Goda, “Ultrafast optical
imaging for freezing fast dynamics”, Japanese
Journal of Optics 3, 124 (2014)
183.
K.
Nakagawa, I. Sakuma, F. Kannari, and K. Goda, “Motion
picture femtophotography”, Optics & Photonics News 59, December (2014)
184.
M.
Takahashi, Y. Sakaki, T. Ideguchi, and K. Goda, 「分散フーリエ分光法・デュアルコム分光法を用いた新規な超高速分光測定」, 分光研究 63, 5, 210 (2014)
185.
M. Ugawa, T. Ideguchi, and K. Goda, 「迅速・非侵襲に血中がん細胞を発見するカメラ」, PET
Journal 28, 28 (2014)
186.
K.
Nakagawa and K. Goda, 「1兆分の1秒以下の世界を捉える連写カメラ」, セラミックス 49, 12 (2014)
187.
A. Nakagawa,
K. Ohtani, K. Goda, R. Armonda, and E. Tominaga, 「爆風による外傷性脳損傷 (blast-induced traumatic brain injury)」,
Annual Review 神経, 192 (2014)
188.
B.
Jalali, M. Li, K. Goda, and M. H. Asghari, “Real-time photonic measurements,
data management, and processing”, Proceedings
of SPIE 9279 (2014)
189.
K. Goda
and B. Jalali, “Dispersive
Fourier transformation for fast continuous single-shot measurements“, Nature
Photonics 7, 102 (2013)
190. H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda,
and B. Jalali, “Ultrafast
web inspection with hybrid dispersion laser scanner“, Applied
Optics 52, 4072 (2013)
191. A. Mahjoubfar, K.
Goda, G. Betts, and B. Jalali, “Optically
amplified detection for biomedical sensing and imaging“, Journal
of Optical Society of America A 30, 2124 (2013)
192.
M.
Takahashi and K. Goda, 「超高速光イメージング技術を用いた低コストがん診断法」, 映像情報インダストリアル, 5月号 (2013)
193.
K. Goda,
A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. Fard, S.
C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali,
“High-throughput
single-microparticle imaging flow analyzer“, PNAS
(2012)
194.
K. Goda,
A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R.
Gossett, A. Ayazi, O. Malik, E. Chen, D. Di Carlo,
and B. Jalali, “Hybrid dispersion laser scanner“, Scientific
Reports 2, 445 (2012)
195.
D. R.
Gossett, H. T. K. Tse, J. Dudani,
K. Goda, T. Woods, S. Graves, and D. Di Carlo, “Inertial
manipulation and transfer of microparticles across laminar fluid streams“, Small
8, 2757 (2012)
196.
K. Goda,
A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput
optical coherence tomography at 800 nm“, Optics
Express 20, 19612 (2012)
197.
S. H.
Kim, K. Goda, A. Fard, and B. Jalali, “An optical time-domain analog pattern
correlator for high-speed image recognition”, Optics Letters 36, 220 (2011)
198.
A. Fard,
A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo,
and B. Jalali, “Nomarski serial time-encoded
amplified microscopy for high-speed contrast-enhanced imaging of transparent
media”, Biomedical Optics Express 2,
3387 (2011)
199.
A. Mahjoubfar, K. Goda, A. Ayazi, A.
Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging
vibrometer and velocimeter”, Applied
Physics Letters 98, 101107 (2011)
200.
Z. Tan,
C. Wang, K. Goda, and B. Jalali, “Jammed-array wideband sawtooth filter”, Optics Express 19, 24563 (2011)
201.
K. Goda
and B. Jalali, “Noise figure of amplified dispersive Fourier transformation”, Physical Review A 82, 033827 (2010)
202.
B.
Jalali, D. R. Solli, K. Goda, K. Tsia, and C. Ropers, “Real-time measurements,
rare events, and photon economics”, European
Journal of Physics Special Topics 185, 145 (2010)
203.
B.
Jalali, K. Goda, P. Soon-Shiong, and K. K. Tsia,
“Time-stretch imaging and its applications to high-throughput microscopy and
microsurgery”, IEEE Photonics Society
Newsletter 24, 11 (2010)
204.
B.
Jalali, P. Soon-Shiong, and K. Goda, “Breaking speed
and sensitivity limits”, Optik & Photonik 2, 32 (2010)
205.
K. K.
Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded
amplified microscope”, Optics Express
18, 10016 (2010)
206.
The LIGO Scientific Collaboration and the VIRGO Collaboration, “Searches for
gravitational waves from known pulsars with Science Run 5 LIGO data”, The
Astrophysical Journal 713,
671 (2010)
207.
The LIGO Scientific Collaboration and the VIRGO Collaboration, “Search for
gravitational-wave bursts associated with gamma-ray bursts using data from LIGO
Science Run 5 and VIRGO Science Run 1”, The Astrophysical Journal 715, 1438 (2010)
208.
K. Goda,
K. K. Tsia, and B. Jalali, “Serial time-encoded
amplified imaging for real-time observation of fast dynamic phenomena“, Nature
458, 1145 (2009)
209.
The LIGO Scientific Collaboration and the VIRGO Collaboration, “An
upper limit on the stochastic gravitational-wave background of cosmological
origin“, Nature
460, 990 (2009)
210.
K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory
of amplified dispersive Fourier transformation“, Physical Review A 80, 043821
(2009)
211.
K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration
of Raman gain at 800 nm in single-mode fiber and its potential application to
biological sensing and imaging”, Applied Physics Letters 95,
251101 (2009)
212.
K. K.
Tsia, K. Goda, D. Capewell, and
B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser
microsurgery”, Optics Letters 34, 2099 (2009)
213.
K. Goda, 「光情報処理を用いた超高速イメージング法」, OptoNews 3, 7 (2009)
214.
The LIGO Scientific Collaboration, “All-sky LIGO search for periodic
gravitational waves in the early fifth-science-run
data”, Physical Review Letters 102, 111102 (2009)
215.
The LIGO Scientific Collaboration, “LIGO: the laser interferometer
gravitational-wave observatory”, Reports on Progress in Physics
72, 076901 (2009)
216.
The LIGO Scientific Collaboration, “Einstein@Home
search for periodic gravitational waves in LIGO S4 data”, Physical
Review D 79, 022001 (2009)
217.
The LIGO Scientific Collaboration, “Einstein@Home
search for periodic gravitational waves in early S5 LIGO data”, Physical
Review D 80, 042003 (2009)
218.
The LIGO Scientific Collaboration, “Search for gravitational waves from low
mass binary coalescences in the first year of LIGO’s S5 data”, Physical
Review D 79, 122001 (2009)
219.
The LIGO Scientific Collaboration, “Search for gravitational waves from low
mass compact binary coalescence in 186 days of LIGO’s fifth science run”, Physical
Review D 80, 047101 (2009)
220.
The LIGO Scientific Collaboration, “Search for gravitational wave ringdowns from
perturbed black holes in LIGO S4 data”, Physical Review D 80, 062001
(2009)
221.
The LIGO Scientific Collaboration, “First LIGO search for gravitational wave
bursts from cosmic (super)strings”, Physical Review D 80, 062002
(2009)
222.
The LIGO Scientific Collaboration, “Search for high frequency
gravitational-wave bursts in the first calendar year of LIGO’s fifth science
run”, Physical Review D 80, 102002 (2009)
223.
The LIGO Scientific Collaboration, “Search for gravitational-wave bursts in
the first year of the fifth LIGO science run”, Physical Review D
80, 102001 (2009)
224.
The LIGO Scientific Collaboration, “Stacked search for gravitational waves
from the 2006 SGR 1900+14 storm”, Astrophysical Journal Letters
701, L68 (2009)
225.
The LIGO Scientific Collaboration, “Observation of a kilogram-scale oscillator
near its quantum ground state”, New Journal of Physics 11, 073032 (2009)
226.
K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R.
Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype
gravitational-wave detector“, Nature Physics 4, 472 (2008)
227.
K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform
imaging for ultrafast displacement sensing and barcode reading”, Applied
Physics Letters 93, 131109 (2008)
228.
K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled
by amplified dispersive Fourier transformation”, Applied Physics Letters
93, 031106 (2008)
229.
K. Goda, E. E. Mikhailov, O. Miyakawa, S. Saraf, S. Vass, A. J. Weinstein, and
N. Mavalvala, “Generation of a stable low-frequency squeezed vacuum field with periodically-poled KTiOPO4 at 1064 nm”, Optics Letters 33,
92 (2008)
230.
The LIGO Scientific Collaboration, “Search for gravitational-wave bursts from
soft gamma repeaters”, Physical Review Letters 101,
211102 (2008)
231.
The LIGO Scientific Collaboration, “Search for S3 LIGO data for gravitational
wave signals from spinning black hole and neutron star binary inspirals”, Physical Review D 78, 042002
(2008)
232.
The LIGO Scientific Collaboration, “Search for gravitational waves from binary
inspirals in S3 and S4 LIGO data”, Physical
Review D 77, 062002 (2008)
233.
The LIGO Scientific Collaboration, “Search for gravitational waves associated
with 39 gamma-ray bursts using data from the second, third, and fourth LIGO
runs”, Physical Review D 77, 062004 (2008)
234.
The LIGO Scientific Collaboration, “First cross-correlation analysis of
interferometric and resonant-bar gravitational-wave data for stochastic
backgrounds”, Physical Review D 77, 022001 (2008)
235.
The LIGO Scientific Collaboration, “Implications for the origin of GRB 070201
from LIGO observations”, The Astrophysical Journal 681,
1419 (2008)
236.
The LIGO Scientific Collaboration, “Beating the spin-down limit on
gravitational wave emission from the Crab Pulsar” Astrophysical Journal Letters
683, L45 (2008)
237.
The LIGO Scientific Collaboration, “A joint search for gravitational wave
bursts with AURIGA and LIGO”, Classical and Quantum Gravity 25,
095004 (2008)
238.
The LIGO Scientific Collaboration, “First joint search for gravitational-wave
bursts in LIGO and GEO 600 data”, Classical and Quantum Gravity 25,
245008 (2008)
239.
K.
Somiya, K. Goda, Y. Chen, and E.
E. Mikhailov, “Utility investigation of artificial time delay in
displacement-noise-free interferometers”, Physical Review D 76, 022002
(2007)
240.
The LIGO Scientific Collaboration, “Searches for periodic gravitational waves
from unknown isolated sources and Scorpius X-1: results from the second LIGO
science run”, Physical Review D 76, 082001 (2007)
241.
The LIGO Scientific Collaboration, “Search for gravitational wave radiation
associated with the pulsating tail of the SGR 1806-20 hyperflare
of 27 December 2004 using LIGO”, Physical Review D 76, 062003
(2007)
242.
The LIGO Scientific Collaboration, “Upper limits on gravitational wave
emission from 78 radio pulsars”, Physical Review D 76, 042001
(2007)
243.
The LIGO Scientific Collaboration, “Upper limit map of a background of
gravitational waves”, Physical Review D 76, 082003
(2007)
244.
The LIGO Scientific Collaboration, “First cross-correlation analysis of
interferometric and resonant-bar gravitational-wave data for stochastic
backgrounds”, Physical Review D 76, 022001 (2007)
245.
The LIGO Scientific Collaboration, “Search for gravitational-wave bursts in
LIGO data from the fourth science run”, Classical and Quantum Gravity 24,
5343 (2007)
246.
The LIGO Scientific Collaboration, “Searching for a stochastic background of
gravitational waves with LIGO”, The Astrophysical Journal 659,
918 (2007)
247.
G.
Popescu, T. Ikeda, K. Goda, C.
A. Best, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. Feld, “Optical measurement of cell membrane tension”, Physical
Review Letters 97, 218101 (2006)
248.
Y. Chen,
A. Pai, K. Somiya, S. Kawamura, S. Sato, K. Kokeyama,
R. L. Ward, K. Goda, and E. E.
Mikhailov, “Interferometers for displacement-noise-free gravitational-wave
detection”, Physical Review Letters 97, 151103 (2006)
249.
E. E.
Mikhailov, K. Goda, and N.
Mavalvala, “Noninvasive measurements of cavity parameters by use of squeezed
vacuum”, Physical Review A 74, 033817 (2006)
250.
E. E.
Mikhailov, K. Goda, T. Corbitt,
and N. Mavalvala, “Frequency-dependent squeeze-amplitude attenuation and
squeeze-angle rotation by electromagnetically induced transparency for
gravitational-wave interferometers”, Physical Review A 73, 053810
(2006)
251.
The LIGO Scientific Collaboration, “Joint LIGO and TAMA300 search for
gravitational waves from inspiralling neutron star
binaries”, Physical Review D 73, 102002 (2006)
252.
The LIGO Scientific Collaboration, “Search for gravitational waves from binary
black hole inspirals in LIGO data”, Physical
Review D 72, 062001 (2006)
253.
The LIGO Scientific Collaboration, “Search for gravitational-wave bursts in
LIGO’s third science run”, Classical and Quantum Gravity 23,
S29 (2006)
254.
K.
McKenzie, E. E. Mikhailov, K. Goda,
P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, “Quantum
noise locking”, Journal of Optics B: Quantum and Semiclassical Optics 7,
S421 (2005)
255.
K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N.
Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency
squeezing in a degenerate optical parametric oscillator”, Physical Review A
72, 043819 (2005)
256.
The LIGO Scientific Collaboration, “Upper limits on a stochastic background of
gravitational waves”, Physical Review Letters 95, 221101
(2005)
257.
The LIGO Scientific Collaboration, “Limits on gravitational-wave emission from
selected pulsars using LIGO data”, Physical Review Letters 94,
181103 (2005)
258.
The LIGO Scientific Collaboration, “Search for gravitational waves associated
with the gamma ray burst GRB030329 using the LIGO detectors”, Physical
Review D 72, 042002 (2005)
259.
The LIGO Scientific Collaboration, “Upper limits on gravitational wave bursts
in LIGO’s second science run”, Physical Review D 72, 062001
(2005)
260.
The LIGO Scientific Collaboration, “Upper limits from the LIGO and TAMA
detectors on the rate of gravitational-wave bursts”, Physical Review D
72, 122004 (2005)
261.
The LIGO Scientific Collaboration, “Search for gravitational waves from
galactic and extra-galactic binary neutron stars”, Physical Review D
72, 082001 (2005)
262.
The LIGO Scientific Collaboration, “Search for gravitational waves from
primordial black hole binary coalescences in the galactic halo”, Physical
Review D 72, 082002 (2005)
263.
The LIGO Scientific Collaboration, “First all-sky upper limits from LIGO on
the strength of periodic gravitational waves using the Hough transform”, Physical
Review D 72, 102004 (2005)
264.
K. Goda, D. Ottaway, B. Connelly, R. Adhikari, N. Mavalvala, and A. Gretarsson,
“Frequency resolving spatiotemporal wavefront sensor”, Optics Letters 29,
1452 (2004)
265.
The LIGO Scientific Collaboration, “First upper limits from LIGO on
gravitational wave bursts”, Physical Review D 69, 102001
(2004)
266.
The LIGO Scientific Collaboration, “Analysis of LIGO data for gravitational
waves from binary neutron stars”, Physical Review D 69, 122001
(2004)
267.
The LIGO Scientific Collaboration, “Setting upper limits on the strength of
periodic gravitational waves from PSR J1939+2134 using the first science data
from the GEO 600 and LIGO detectors”, Physical Review D 69, 082004
(2004)
268.
The LIGO Scientific Collaboration, “Analysis of first LIGO science data for
stochastic gravitational waves”, Physical Review D 69, 122004
(2004)
269.
The LIGO Scientific Collaboration, “Detector description and performance for
the first coincidence observations between LIGO and GEO”, Nuclear Instruments and
Methods in Physics Research Section A 517, 154 (2004)
受賞実績
合田研究室のメンバーは、学会、財団、政府などから数多くの賞などを受賞しています。

唐 旭科 (Cohen)
中華人民共和国国家優秀私費留学生奨学金 (2023)

合田 圭介
日本デザイン振興会グッドデザイン賞 (2023)

菅野 寛志
日本光学会コニカミノルタ光みらい奨励賞 (2023)

平松 光太郎
日本光学会光学論文賞 (2023)

合田 圭介
国際基礎科学大会Frontiers of Science Award (2023)

長坂 柚葵 (Emma)
化学とマイクロ・ナノシステム学会優秀発表賞 (2023)

张 鸿骞 (Sophy/弘美)
応用物理学会春季学術講演会講演奨励賞 (2023)

周 雨奇 (Iris)
量子生命科学会若手優秀賞 (2023)

邓 云杰 (Jacey/雲美)
東京大学大学院理学系研究科研究奨励賞 (2023)

菅野 寛志
東京大学大学院理学系研究科研究奨励賞 (2023)

合田 圭介
米国科学振興協会(AAAS)フェロー (2023)

邓 云杰 (Jacey/雲美)
セレンディピティラボセレンディピティ賞 (2022)

石井 夏実
セレンディピティシンポジウム優秀ポスター賞 (2022)

松村 洋貴
東京大学フォトンサイエンス国際卓越大学院プログラム 優秀賞 (2022)
周 雨奇 (Iris)
中華人民共和国国家優秀私費留学生奨学金 (2022)

滝沢 繁和
27th International Conference on Raman Spectroscopy 優秀ポスター賞 (2022)
林 実加
東京大学 3MT Thesis CompetitionRunner-Up賞 (2022)

合田 圭介
フンボルト財団Philipp Franz von Siebold Award (2022)

PETERSON Jorgen Walker (渡)
Photonics Challenge最優秀ビジネス賞 (2022)

LINDLEY Matthew
東京大学大学院理学系研究科研究奨励賞 (2022)

中尾 龍二
東京大学大学院理学系研究科研究奨励賞 (2022)

PETERSON Jorgen Walker (渡)
NEDO Technology Commercialization Program 優秀賞 (2022)
PETERSON Jorgen Walker (渡)
NEDO Technology Commercialization Program 認定VC賞 (2022)
PETERSON Jorgen Walker (渡)
SPIE Photonics WestTeledyne優秀発表賞 (2022)

周 雨奇 (Iris)
セレンディピティラボセレンディピティ賞 (2021)

菅野 寛志
セレンディピティラボセレンディピティ賞 (2021)

平松 光太郎
日本分光学会年次講演会若手講演賞 (2021)

PETERSON Jorgen Walker (渡)
日本分光学会度年次講演会若手講演賞 (2021)

XIAO Tinghui
エヌエフ基金研究開発奨励賞 (2021)

亀山 理紗子
日本光学会コニカミノルタ光みらい奨励賞 (2021)

XIAO Tinghui
日本光学会光学論文賞 (2021)

GALA DE PABLO Julia
量子生命科学会第3回大会優秀講演賞 (2021)

菅野 寛志
量子生命科学会第3回大会優秀ポスター賞 (2021)

PETERSON Jorgen Walker (渡)
量子生命科学会第3回大会優秀ポスター賞 (2021)

合田 圭介
Royal Society of Chemistry - DolomitePioneers of Miniaturization Lectureship (2021)

中川 悠太
酵母遺伝学フォーラム優秀発表賞 (2021)

XIAO Tinghui
量子生命科学会若手優秀賞 (2021)

中川 悠太
化学とマイクロ・ナノシステム学会優秀発表賞 (2021)

合田 圭介
双葉電子記念財団衞藤細矢記念賞 (2021)

亀山 理紗子
SPIE Photonics WestTeledyne優秀発表賞 (2021)

周 雨奇 (Iris)
SPIE Photonics WestHitachi High-Tech優秀発表賞 (2021)

XIAO Tinghui
Europhysics LettersDistinguished Referee Award (2021)

MCCANN Phillip Charles
SPIE Photonics WestPicoQuant Best Picture Award (2021)

磯崎 瑛宏
化学とマイクロ・ナノシステム学会若手優秀賞 (2021)

Phillip Charles McCann
東京大学大学院理学系研究科研究奨励賞 (2021)

合田 圭介
SPIE Biophotonics Technology Innovator Award (2021)
三上 秀治
応用物理学会フォトニクス奨励賞 (2020)

亀山 理紗子
分子科学会学生優秀講演賞 (2020)

GALA DE PABLO Julia
セレンディピティシンポジウム優秀ポスター賞 (2020)

荒木 武人
セレンディピティシンポジウム優秀ポスター賞 (2020)

平松 光太郎
エヌエフ基金研究開発特別賞 (2020)

中川 悠太
東京大学 3MT Thesis Competition最優秀賞 (2020)

合田 圭介
文部科学大臣表彰科学技術賞 (2020)

田島 達矢
東京大学理学部化学科学科長賞 (2020)

周 雨奇 (Iris)
SPIE Photonics WestHamamatsu優秀発表賞 (2020)

LINDLEY Matthew
SPIE Photonics WestHitach High-Tech優秀発表賞 (2020)

松村 洋貴
東京大学フォトンサイエンス国際卓越大学院プログラム 優秀賞 (2020)
菅野 寛志
東京大学フォトンサイエンス国際卓越大学院プログラム 優秀賞 (2020)
中川 悠太
東京大学大学院理学系研究科研究奨励賞 (2020)

合田 圭介
Royal Society of ChemistryFellow (2020)

磯崎 瑛宏
コニカミノルタ科学技術振興財団画像科学連携賞 (2020)

PETERSON Jorgen Walker (渡)
Student Conference on Lightベストオーラルプレゼンテーション賞 (2019)

平松 光太郎
応用物理学会秋季学術講演会講演奨励賞 (2019)

中川 悠太
セレンディピティシンポジウム優秀ポスター賞 (2019)

吴 云昭
セレンディピティシンポジウム優秀ポスター賞 (2019)

徐 木貞
セレンディピティシンポジウム優秀ポスター賞 (2019)

三上 秀治
日本光学会光学論文賞 (2019)

合田 圭介
米国化学会Analytical Chemistry Young Innovator Award (2019)

合田 圭介
Light: Science & ApplicationsOutstanding Reviewer Award (2019)

磯崎 瑛宏
化学とマイクロ・ナノシステム学会優秀研究賞 (2019)

平松 光太郎
日本化学会年次講演会優秀発表賞 (2019)

周 雨奇 (Iris)
量子生命科学会第1回大会優秀ポスター賞 (2019)

合田 圭介
読売テクノフォーラムゴールドメダル (2019)

XIAO Tinghui
中華人民共和国国家優秀私費留学生奨学金 (2019)

木下川 涼
東京大学大学院理学系研究科研究奨励賞 (2019)

平松 光太郎
SPIE Photonics West優秀発表賞 (2019)

三上 秀治
SPIE Photonics West優秀発表賞 (2019)

合田 圭介
日本学士院学術奨励賞 (2019)

三上 秀治
コニカミノルタ科学技術振興財団画像科学奨励賞 (2019)

合田 圭介
ICHSIP CongressNAC High-Speed Imaging Award (2018)

合田 圭介
市村清新技術財団市村学術賞 (2018)

磯崎 瑛宏
フォトロン社フォトロン賞 (2018)

合田 圭介
IMCO ConferenceYoung Scientist Award (2018)

磯崎 瑛宏
ISAC Cytometry Art Contest最優秀賞 (2018)

合田 圭介
応用物理学会高野榮一賞 (2018)

合田 圭介
日本学術振興会日本学術振興会賞 (2018)

平松 光太郎
宇部興産学術振興財団奨励賞 (2017)

合田 圭介
SPIEFellow (2018)

木下川 涼
UTokyo1000k商品アイディアコンテスト最優秀賞 (2017)

三上 秀治
日本光学会光設計特別賞 (2017)

LEI Cheng
日本光学会光学論文賞 (2017)

合田 圭介
WIRED MagazineWIRED Audi Innovation Award (2016)

LEI Cheng
SPIE Photonics West優秀論文賞 (2016)

合田 圭介
IEEE Photonics SocietyDistinguished Lecturers Award (2015)

合田 圭介
文部科学大臣表彰若手科学者賞 (2014)
進学・募集案内
合田研究室は、科学的探求において主導的な役割を果たし、世界に大きなインパクトを与えることに関心がある、意欲的な学生・研究者を常時募集しています。他大学と他分野(物理学、生物学、情報科学、数学、電気工学、機械工学、生体工学、化学工学など)の学生・研究者を歓迎します。また、企業や政府からの研究者も歓迎します。合田研究室では、学位取得、短期滞在、長期滞在など、様々なキャリア形成の機会を提供しています。合田研究室に興味のある方は、その旨に関するメールを合田教授に送ってください。
連絡先
住所
〒113-0033
東京都文京区本郷7-3-1
東京大学化学東館213号室
メール
合田圭介(教授)
goda@chem.s.u-tokyo.ac.jp
河井直子(秘書)
kawai-n@g.ecc.u-tokyo.ac.jp
電話
合田教授オフィス
03-5841-4329
スタッフ部屋
03-5841-7649