Journal Club 2011/11/10 Tatsuaki Matsubara

Selective, Room-Temperature Transformation of Methane to C1 Oxygenates by Deep UV Photolysis over Zeolites

Sastre, F.; Fornés, V.; Corma, A.; García, H. J. Am. Chem. Soc. 2011, 133, 17257–17261.

1. Introduction

1-1. Methane (CH₄) as natural gas

• CH₄ is the principal component of most natural gas and widely used.

- Home and industrial heating

- Producing synthesis gas for methanol production

- Feeding gas for Fischer-Tropsch units

- <u>Problems:</u>
- Difficulty to transport from reserves.

- Needs high energy to convert.

→ It would be on much interest to convert CH₄ into liquid fuels, particularly methanol and C1 oxygenates in mild condition.

1-2. Conversion of CH4 to MeOH

• Currently industrial processes:

(1) Indirect oxidation to MeOH and Fischer-Tropsch process ¹

$$CH_4 + H_2O \xrightarrow{\text{cat.}} CO + 3H_2 \xrightarrow{50-100 \text{ atm}} CH_3OH + H_2$$
 (1)
 $\frac{\text{Fe or Co}}{\text{heat}} \text{ hydrocarbons}$ (2)

• Recently developed in laboratories:

(2) α-oxygen

$$N_2O$$
 $\xrightarrow{\text{Fe-doped zeolite}}$ $N_2 + (O)_{\alpha}$ (3) $-(O)_{\alpha}$ is activated oxygen. $-(O)_{\alpha}$

Is it possible to convert CH₄ into MeOH under mild conditions?

1-3. This Work

 Concept: General ability of radicals to readily activate CH₄ under mild conditions

• Original photocatalytic process:

- Deep UV irradiation (< 200 nm) of CH₄ over zeolite

<u>What is zeolite?</u> - Microporous, aluminosilicate materials - Previous method of conversion of CH₄ with zeolite:

Various kinds of structure can be synthesized.
 (194 frameworks are identified until 2010)

• Zeolite beta was employed:

- (1) Especially large pore (5–7 Å)
- (2) High Si / Al ratio

Figure 1.
The structure of zeolite-beta

- Deep UV irradiation should give hydrogen atom and silyloxy radical. 2

- Hydrogen atom from CH₄ should be abstracted to form silylmethyl ether. (eq. 7, 8)

- Microporus structure of zeolite is expected to capture CH₄, preventing CH₃ radicals from side reactions toward hydrocarbons.

2. Results and Discussion

2-1. Design and Synthesis of Zeolites

• 4 types of zeolite beta were synthesized following the reported procedures. (Table 1) ³

Table 1. Synthesized zeolites and their nature

zeolite	Si/AI	pore size (Å)	surface area (m²/g)	pore volume (cm ³ /g)	population of silanol groups ^a	
silica	only Si	no micropores			100	
beta (Si, F)	only Si	7.1 x 6.6	481	0.22	20	
beta (Al, F)	22		503	0.23	. 22	
beta (Si, OH)	only Si		490	0.22	33	
beta (Al, OH)	22		540	0.24	30	

a Relative population of silanol groups

2-2. Deep UV Photolysis

• Methanol and other C1 oxygenates were obtained only in the presence of O_2 .

Figure 2. MAS ¹³C NMR of zeolite after UV irradiation

2-3. Effect of the Nature of the Zeolite Catalysts

Table 2. Product Distribution

Reaction Condition:

solid	silanol groups ^a	total	absorption rate	products released to the gas phase (%)			products absorbed in the silicate (%)		
		conversion		C ₂	H ₂	CH ₃ OH	НСНО	НСООН	CH ₃ OH
silica gel	100	0.5	0.85	54.2	29.1		19.6	28.3	52.1
beta (Si F)	20	0.86	99	·	20.7	79.3	23.8	25.5	50.7
beta (Al F)	22	1.63	> 99		100		25.8	24.4	49.8
beta (Si OH)	33	2.01	> 99	~*	100		21.2	30.8	48.0
beta (Al OH)	30	1.66	98	84.2	15.8		16.4	28.7	54.9
no catalyst	0 .	0.49	0	73.5	3.8	5.1 .	23.9	25.8	50.3

a Relative population of silanol groups

- Photolysis over silica gel gives the lowest conversion of the series, though the amount of silanol groups is much larger on the amorphous silica catalyst.
 - ➤ Zeolite structure is advantageous to convert CH₄.
- Micropore in zeolite may be able to capture CH₄ molecule → Prevent side reactions.
- Good selectivity toward C1 oxygenates (> 98% selectivity), although beta (Al OH) showed a hydrocarbon generation.
- ☆ The larger the number of internal silanol groups, the higher the catalyst activity (higher total conversion).
- → Silanol groups are actually involved in CH₄ conversion.
- CH₄ conversion increases with the amount of photocatalyst (Table 3). *Table 3*. CH₄ conversion as a function of the amount of beta zeolite

mass photocatalyst (g)	total conversion			eleased hase (%)	products absorbed in the silicate (%)		
		C ₂	H ₂	CH₃OH	нсно	нсоон	CH ₃ OH
. 0.1	1.8		100		23.9	25.8	50.2
1	3.9		100		25.4	24.3	50.3
2	6.2		100		17.7	25.8	56.5
1 <i>a</i>	13	32.15	53.12		36	22.5	40.5

^a After 1 h irradiation

☆ CH₄ conversion above 13% could be obtained in 1 h with selectivity over 99% toward oxygenated products.

2-4. Reaction Mechanism

UV irradiation may generate silyloxy radicals and hydrogen atom.

• The presence of oxygen is crucial to scavenge CH₃ radicals, stopping the formation of hydrocarbons (Scheme 1).

2-5. Usability of this Method

- Energy consumption:
 7.16 Gcal mol⁻¹ (13% conversion with 185 nm lamp, 60 min irradiation)
 cf.) 15.9 Gcal mol⁻¹ (transformation of 1 mol of CH₄ to CO/H₂) ⁴
- Two-step cycle was achieved (Scheme 3, Figure 2).

Figure 2. ¹³C NMR of two-step cycle

- Zeolite can be reused (at least 3 times) without observing changes in the behavior of the material.
- Remaining water doesn't affect to the activity of zeolite.

3. Conclusions

- 13% conversion of CH₄ into C1 oxygenates has been accomplished with deep UV irradiation over zeolites at room temperature.
- Oxygen is crutial for the selectivity toward C1 oxygenates, over 95%.
- Estimated energy consumption is about one-half than the energy required for the conventional CH₄ steam reforming process.

4. References

- 1. Ismagilov, Z. R.; Matus, E. V.; Tsikoza, L. T. Energy Environ, Sci. 2008, 1, 526-541.
- 2. Getoff, N.; Schenk, G. O. Photochem. Photobiol. 1968, 8, 167–178.
- 3. Camblor, M. A.; Corma, A.; Valencia, S. J. Mater. Chem. 1998, 8, 2137-2145.
- 4. Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N. Lawrence Berkeley National Laboratory 2000, LBNL-44314.