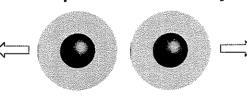
Journal Club 2011/10/27 Kazutaka Shoyama

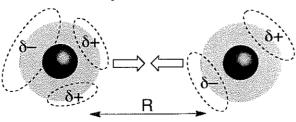
Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces

Schreiner, P. R.; Chernish, L. V.; Gunchenko, P. A.; Tikhonchuk, E. Y.; Hausmann, H.; Serafin, M.; Schlecht, S.; Dahl, J. E. P.; Carlson, R. M. K.; Fokin, A. A. *Nature*, **2011**, *477*, 308-311.

1. Introduction


1.1. Steric effects in chemistry.

- Questions relating to steric chemistry.
 - 1. Why are branched alkanes more stable compared to linear alkanes?
 - 2. What is the smallest saturated acyclic alkane that cannot be made?²
 - 3. How long is the C-C single bond length that can be constructed? (this work)
 - ⇒ Repulsion forces are usually main focus in these chemistry.
 - ⇒ However, consideration of attractive interactions through van der Waals forces are necessary to understand chemical bonding and reactivity fully.


• Pauli repulsion

- > The repulsion force to avoid overlap of electron density.
- Van der Waals forces (including London dispersion force)
 - > Repulsion and also attractive force.
 - Instantaneously-induced (London dispersion force) or permanent dipole causes weak forces.
 - ➤ The strength is proportional to R⁻⁶, where R is the distance between two moieties concerned.

Overlap of electron density

Attraction by instantaneouslyinduced dipole

1.2. Long C-C bonds.

• Empirical bond distance/bond strength relationships have been established for C-C bonds³ (Figure 1).

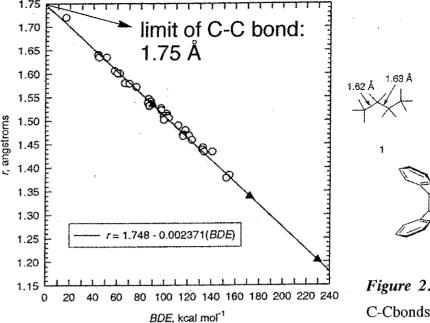


Figure 2. Hydrocarbons with exceptionally long C-Cbonds.

Figure 1. C-C bond length vs bond dissociation energy (BDE)³.

- Records up to date (see Figure 2, note that normal sp³C-sp³C length is 1.54 Å)
 - a. 1.64 Å for alkane 2.
 - b. 1.72 Å for naphthocyclobutane derivative 3.
 - c. 1.67 Å for isolated hexaphenylethane derivative 5 (R = t-Bu).
 - ⇒ All these long bonds are the result of steric crowding.
 - ⇒ These bonds are so long that they are thermally labile at room temperature, homolytically cleave to yield corresponding radical species.
 - ⇒ How to overcome this bond weakening caused by the repulsions?

1.3. This Work.

- The longest alkane C-C bond know to date was constructed.
 - > 1.704 Å for 7.8 (Figure 3).
 - > Use of attractive dispersion forces to suppress bond dissociation.

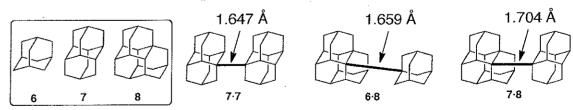
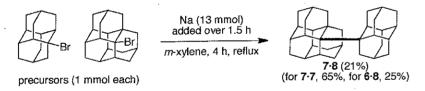


Figure 3. Structures of newly synthesized alkanes that have exceptionally long C-C bonds.


2. Results and Discussion

2.1. Design strategy for long C-C bonds.

- Repulsive forces are necessary.
- However, elongation of a bond finally leads to bond dissociation.
 - According to the literature³, empirical BDE of C-C bond become negative beyond bond length of 1.75 Å.
 - Attractive forces to suppress bond dissociation are key to the formation of long C-C bond.
- Diamondoids to construct long C-C bond with attractive forces.
 - > Bulky structure for repulsive forces.
 - Hydrogen-hydrogen van der Waals contacts causes attractive dispersion interaction to suppress bond dissociation.

2.2. Synthesis.

· Wurtz coupling of diamondoid bromides gave target compounds.

2.3. Properties.

- Extraordinarily long C-C bonds (1.647-1.704 Å) (see Figure 3).
 - > 7.8 has the longest C-C bond length (1.704 Å) for alkane up to date.
- High melting temperature and high thermal stability
 - > 7.7 is stable up to at least 300 °C (m.p. 360 °C), 6.8 slowly decomposes at 300 °C (m.p. 310 °C) and 7.8 starts decomposition at 220 °C.
- H···H contacts between the two hydrocarbon moieties are mostly between 2.2-2.3 Å, which corresponds well to the value usually found in crystal structure (2.2-2.4 Å).

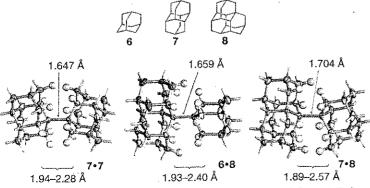
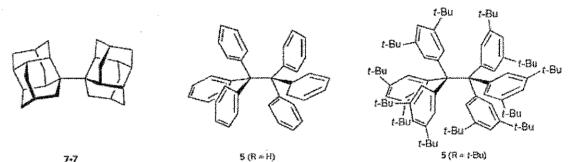



Figure 3. X-ray crystal structures of 7.7, 6.8 and 7.8.

2.3. Computational study of 7.7 using 5 as the reference.

- Widely used B3LYP method does not reproduce dispersion forces⁴.
 - > Use of dispersion corrected method, B3LYP-D.
 - > Other methods that account for dispersion interactions: B97D and M06-2X.
- For 5 (R = H), inclusion of dispersion corrections increases both BDE and C-C bond length. However, For 7.7, inclusion of dispersion corrections increases BDE, but reduces C-C bond length, which is also the case with 5 (R = t-Bu).
 - \Rightarrow For 5 (R = H), attractive dispersion interactions are not so strong.
 - \Rightarrow For 5 (R = t-Bu), attractive dispersion interactions increased by addition of t-Bu moieties, as is the similar case in 7.7.

Table 1. The BDEs and C-C bond lengths of 7.7 and 5 computed at various level of DFT.

Method/quantity	BDE (kcal mol ⁻¹)	C-C (Å)	BDE (kcal mol ⁻¹)	C-C (Å)	BDE (kcal mol - 1)	C-C (Å)
B3LYP/6-31G(d,p) B3LYP-D/6-31G(d,p)	inc.(43.9	dec.(1.674)	inc.(-20.9 10.3 6.5	inc.(1.730)	inc.(^{-26.1} 44.5 38.8	dec.(1.709)
897D/6-31G(d,p) M06-2X/6-31G(d,p) Experiment	64.5 65.8	1.648 1.647	123	1.702	33.0	1.669 1.670(3)

3. Conclusions

- By using attractive dispersion force, alkanes that have exceptionally long C-C bond have isolated and characterized.
- Consideration of attractive interactions including van der Waals forces is necessary for understanding of chemical bonding.

4. References

- 1) Silva, K. M. N.; Goodman J. M. J. Inf. Model. 2005, 45, 81.
- 2) Grimme, S. Angew. Chem. Int. Ed. 2006, 45, 4460.
- 3) Zavitsas, A. A. J. Phys. Chem. A, 2003, 107, 897.
- 4) Grimme, S. J. Comput. Chem. 2004, 25, 1463.

4