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1. Introduction: Chemical Reactions in Ordered Media 
• Ordered media can produce chiral environments. 
   => asymmetric synthesis (e.g. photoreaction, which is unexplored in homogeneous media)1 
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Figure 1. Conventional ordered medias and relationship between selectivity and reactivity in asymmetric synthesis.
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• Liquid Crystals (LC):  ordering close to crystals + molecular mobility 
                    = highly selective asymmetric synthesis with good conversion 

                    - however, no successful report due to poor molecular design and lack of                   
                     mechanistic understanding 
 

2. Previous Work: Enantioselective Photodimerization of Anthracene Derivative in 
Two-Component Liquid Cristal2 

 • First asymmetric synthesis induced by a 

chiral liquid crystal 
• Enantioselective photodimerization of 
anthracene 2a was achieved in 1b•2a liquid 

crystal. 
This work: investigation of the effect of the 
stereochemistry of liquid crystal matrix in 

the asymmetric photodimerization of 
anthracenecarboxilic acids 2 
     => model for tunable chiral reaction                                    

             media for carboxylic acids  
 
3. Tunable Chiral Reaction Media Based on Two-Component Liquid Cristal 
3.1. Synthesis and Preparation of Liquid Crystal Salt 
• Matrices 1a and 1b were synthesized from alanine derivative (S)-5.  
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 => applicable to other amino acids = library of asymmetric matrices 
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Scheme 2. Stereocontrolled synthesis of the amphiphilic amino alcohol 1a and 1b.
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• 1c has only one chiral center => different strategy for the synthesis 

Me3SiCN (1.1 eq)
ZnI (cat.)

CH2Cl2, rt, 5 h

1. LiAlH4 (2.5 eq)
Et2O, reflux, 3 h, 98%

2. (S)-mandelic acid
recrystalization, 21%

Scheme 3. Stereocontrolled synthesis of the amphiphilic amino alcohol 1c.
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• Salts were prepared from equimolar amounts of the amino alcohol and the carboxylic acid. 

   => IR (C=O absorbance): shift from 1680–1695 cm–1 to 1620–1650 cm–1 
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Scheme 4. Preparation of amphiphilic salt from amphiphilic amino alcohol 1a and carboxylic acid 2a.
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3.2. Effect of Matrix Stereochemistry in the Structure of Amphiphilic Amino Alcohol Salts  
• Characterization of thermotropic behavior of the salts =>  DSC, POM, XRD  
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Figure 2. (a) Phases of a thermotropic liquid crystal. (b) Thermotropic behavior from differential scanning calorimetry (DSC), (c)
polaryzed optical microscopy (POM) images, and (d) X-ray difraction (XRD) patterns of the salts of amphiphilic amino alcohols with
photoreactive carboxylic acids. (Cry: crystal, Iso: isotropic, Meso: unidentified mesophase, Sma: smectic A phase, Smx: smectic phase 
other than A).
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• Different phase diagram for the salts prepared from 1a–1c 
   - unexpected result, since difference in the structure of the     
   matrices represents less than 2% of total molecular weight 
   => different reactivities can be expected. 

• Amphiphilic LC unit => bilayer structure 
   - layer thickness d: dobserved (XRD) < dcalculated 
   => interdigitation of alkyl chains 

 
3.3. Photodimerization of Anthracenecarboxylic Acids (2a and 2b) 
• Photodimerization of anthracene derivatives (discovered in 1867) 

  = a benchmark for supramolecular systems in controlled reactions 
• Dimerization of 2-anthracenecarboxylic acid (2a) in 1 gave 4 dimers. 
  = synHH, antiHH, synHT, antiHT (HH = head-to-head, HT = head-to-tail) 
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Table 1. Photodimerization of 2-Anthracenecarboxylic Acid (2a)

a Determined by 1H NMR. b Determined by HPLC. HH = head-to-head. HT = head-to-tail.

R = CO2Me

 

1. Reactivity: Iso > LC > Cry 

  - Moderate reaction yields in LC were obtained after increase of the temperature/time. 
2. Regioselectivity: HH > HT => intralayer dimerization 
3. Diastereoselectivity: synHH/antiHH ratio was controlled by the amino alcohol stereochemistry 

  - antiHH selectivity (26:72) in 1b and synHH selectivity (61:37) in 1c  
4. Enantioselectivity (antiHH): very high in LC phases (up to 86%) but low in Iso phases 
  => originated from the framework of the chiral supramolecular structure   

 
• Photodimerization of 2b: moderate yields and high HH selectivity (Table 2) 

head-
to-head
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head-
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Figure 4. Formation of HH and HT 
dimers.
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Figure 3. Schematic representation of amphiphilic
amino alcohol and photoreactive carboxylic acid in 
a self-assembled bilayer.
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Table 2. Photodimerization of 1-Anthracenecarboxylic Acid (2b)

a Determined by 1H NMR. b Determined by HPLC. HH = head-to-head. HT = head-to-tail.

R = CO2Me

 
 
• Diastereoselectivity: synHH > antiHH  /  Enantioselectivity (antiHH): low 

  => in antiHH-3b, the carboxylic acid groups are too far to form in the 1D  
     hydrogen-bond network in LC 
 

3.4. Characteristic Properties of Amphiphilic Amino Alcohols 
 • Dihedral Angle θ = angle between 

amino/hydroxy and aromatic planes 

 - defines the environment formed by LC 
 - different θ = different reactivity 
 • 1b has the narrowest θ range  

=> rigid structure, high enantioselectivity 
3.5.  Mechanism (Figure 7) 
• Photodimerization of anthracenecarboxylic acid 

 (a) reduction of distance in z-axis 
 (b) expansion in x-axis to avoid congestion of the    
    alkyl chains (observed by XRD) 

• Flexible structure and strong matrix-substrate 
interaction suppressed the collapse of the ordered 
structure of LC. 

  => high stereoselectivity with high conversion 
 
4. Conclusion 
 Small changes in the liquid crystal matrix structure resulted in changes in the supramolecular 
structure, turning possible the tuning of stereoselectivity in the reaction product. 
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Figure 5. Network of 
hydrogen bond.
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Figure 6. (a) Newman projection of the conformation of the amino alcohols. 

(b) Definition of the dihedral angle !. a Range determined by structure of 20

analogous amino alcohols obtained from Cambridge Structure Database
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Figure 7. Schematic representation of the plausible structural 
changes of 1c•2a through the photodimerization of 2a.
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