Conjugated Polymers That Respond to Oxidation with Increased Emission

Dane, E. L.; King, S. B.; Swager, T. M. J. Am. Chem. Soc. **2010**, 132, 7758–13995.

1. Introduction

1-1. Fluorescent Conjugated Polymers (Fluorescent CPs)

• Fluorescent CPs, such as PPV and PPE (Figure 1), have potentials for application of OLEDs, detections of the trace amount of the specific chemicals, such as TNT, *etc*.

• Most fluorescent CPs become less emissive under an aerobic atmosphere (Photobleaching), due to the oxidation of the multiple bonds, to form carbonyl groups *etc.*, of CPs. \rightarrow Oxidative atomosphere disturbs the use of fluorescent CPs.

Poly(p-phenylene ethynylene) (PPE)

1-2. Authors' Previous Work

- (Purpose) Prevention of Photobleaching
- •(Strategy)
- Add antioxidants or triplet quenchers.¹

- Increase IPs of polymers by introducing electron-withdrawing perfluoroalkyl groups.²

 \rightarrow Achieve higher durability.

1-3. This Work

(Previous Report) P-containing polymer (Figure 2) → almost same emission efficiency before/after oxidation³ → P was selectively oxidized in the presence of multiple bonds. → Prevent photobleaching
(Authors' Strategy) Introduce sulfur-containing moieties to PPE polymer backbone

- Sulfur atoms can be selectively oxidized in the presence of alkynes \rightarrow Sulfur atoms can prevent the oxidation of main chain like phosphorous, and keep the fluorescent property.

- Electron withdrawing nature of oxidized sulfur atoms (sulfoxide and sulfone moieties) is expected to cause changes of spectra and may increase the emission due to the donor-acceptor interactions?

- In general, thioether, sulfoxide, and sulfone based CPs were less investigated than thiophene-based CPs.⁴

 \rightarrow Introduce thisether moiety to polymer backbone.

Figure 1. Examples of Fluorescent CPs

Poly(p-phenylene vinylene)

(PPV)

Figure 2. Reported phosphorous containing polymer

2. Results and Discussion

2-1. Synthesis

• Thioether containing iodide 1 was prepared from readily available 1,2,4,5-tetrachlorobenzene (Scheme 1).

Scheme 2. Synthesis of thioether containing polymer P1 and P2.

• Two polymers were synthesized via Sonogashira cross-coupling from **1** and corresponding dialkynylbenzene (Scheme 2).

P1-P2

Product

P1A, P2A

P1B, P2B

P1C, P2C

P1D, P2D

Х

2.10

4.20

6.30

8.40

mCPBA (X equiv)

–78 °C to rt, overnight

CH₂Cl₂

2-2. Oxidation of Polymers

• Oxidized polymers were prepared with various Scheme 3. Oxidation of polymer P1 and P2.

equivalents of mCPBA (Scheme 3).

•According to FT-IR analysis, polymers are first oxidized to sulfoxides (S=O) on four positions and then oxidized to sulfones (O=S=O).⁵

• P2 is more easily to be oxidized to sulfones because of the existence of electron-donating groups.

2-3. Properties of the Solutions of Polymer and Oxidized Polymer (Table 1)

• Both **P1** and **P2** solution in CH_2Cl_2 are relatively non-emissive ($\Phi_F < 0.01$). Once the polymers are oxidized, its quantum yields increase dramatically (**P1A** and **P2A**)

- Reason 1. Shorter fluorescence lifetime of P1 and P2

 \rightarrow Thoroughly degassed solution of polymer model compounds show sharp emission peak in shorter-wavelength region, which is likely to be phosphorescence (Figure 3).

 \rightarrow Thioether promotes intersystem crossing, and phosphorescence process disturbed fluorescence process.

Table 1. Photophisical Properties of Polymers

Polymer	$\Phi_{F}(sol)^a$	$\Phi_{F}(film)^{b}$	τ _F (ns)	k _F (ns⁻¹)
P1 P1A P1B P1C P1D	0.0096 0.35 0.53 0.59 0.48	<0.01 0.57 0.70 -	0.13 0.67 0.73 0.71 0.80	0.074 0.52 0.72 0.83 0.60
P2 P2A P2B P2C P2D	0.0085 0.49 0.28 0.25 0.19	<0.01 0.56 <0.10 <0.10 <0.10	0.17 1.35 1.51 1.66 1.72	0.050 0.36 0.19 0.15 0.11

^{*a*} Quantum yield of polymer solutions in CH₂Cl₂. ^{*b*} Quantum yield of films of polymer. ^{*c*} Florescence lifetime. ^{*d*} Rate of fluoresence = ff/tf

- Reason 2. Higher rate of fluorescence of P1A and P2A

→ Better spatial overlap between HOMO and LUMO (Figure 4. B3LYP6-311+G*). Especially, in actual polymer cases, the overlap is expected to be greater due to the delocalization of frontier orbitals along to main chain.

Figure 4. Calculated HOMO and LUMO of model compounds of P1 before (A) and after (B) oxidation.

•Further oxidation causes the decrease in quantum yield in both cases, especially in P2 case. \rightarrow The formation of sulfone moieties seems to disturb the fluorescence process.

•Oxidation causes the continuous spectral changes in emission (Figure 5).

• In the presence of methylrheniumtrioxide (MTO),⁶ **P2** solution showed the same response as the mCPBA oxidation cases, although the reaction rate was slower

(Figure 5). \rightarrow P2 is said to be applicable for sensors for H₂O₂, which plays important biological roles, such as disease markers and signaling molecules.

2-5. Properties of the Films of Polymer and Oxidized Polymer

• Thin films of each polymer were prepared by spin-casting a chloroform solution, and following annealing at 120 °C for 10 min.

•Each film showed the similar behaviors to that of solutions (For Φ_F values, see Table 1). The films

ofmoderately oxidized polymers showed the good emission. There were no signs of aggregation.

•The films of **P2** did not show any increase of emission when irradiated in air (Figure 6). \rightarrow Oxidation did not proceed under air? Or the oxidation mediated by air is so minimal that any oxidized moieties are effectively quenched by the remaining unoxidized segments.

• Films of oxidized polymers of P2 (P2A-P2D) retained more than 95% fluorescence than that of their original polymer (Figure 5). \rightarrow These films are highly photostable.

Figure 6. Photostability of P2 and its oxidized films.

3. Conclusions

• Thioether containing polymers, which show large increase in Φ_F when oxidized, was synthesized. Films of oxidized polymers are highly resistant to photobleaching.

• The increase of Φ_F is due to both increase of τ_F due to the disappearance of phosphorescence involvement and the increase of k_F due to greater overlap of frontier orbitals.

• Polymer P2 is sensitive to H_2O_2 oxidation. \rightarrow Expected to be applicable for H_2O_2 sensor

4. References

- 1) Andrew, T. L.; Swager, T. M. Macromolecules 2008, 41, 8306-8308.
- 2) Kim, Y.; Whitten, J. E.; Swager, T. M. J. Am. Chem. Soc. 2005, 127, 12122-12130.
- 3) Chen, R.-F.; Zhu, R.; Huang, W. Org. Lett. 2008, 10, 2913–2916.
- 4) Roncali, J. Chem. Rev. 1992, 92, 711-738.

5) Aggarwal, V. K.; Davies, I. W.; Franklin, R.; Maddock, J.; Mahon, M. F.; Molloy, K. C. J. Chem. Soc., Perkin Trans. 1 1994, 2363–2368.

6) Hermann, W. A.; Kühn, F. E. Acc. Chem. Res. 1997, 30, 169-180.