

分析化学II No.2

東京大学 理学部化学科 岡林潤 (スペクトル化学研究センター) 2017.5.8

【5】《酸化還元反応》

以下の反応が自然に進むのは、右向きか左向きか。なお反応に関与する物質の濃度はすべて 1 mol/L とする。 Fe^{3+} , MnO_4^- , Ce^{4+} の標準電位は、それぞれ+0.77 V, +1.51 V, +1.61 V とする。

- 1. $5 \text{Fe}^{2+} + \text{MnO}_{4}^{-} + 8 \text{H}^{-} \rightleftharpoons 5 \text{Fe}^{3+} + \text{Mn}^{2+} + 4 \text{H}_{2} \text{O}$
- 2. $Ce^{3+} + Fe^{3+} \rightleftharpoons Ce^{4+} + Fe^{2+}$

【6】《酸化還元反応》

Cu-Zn ダニエル電池の反応が進み、Cu²⁺ 濃度が 0.2 mol/L, Zn²⁺ 濃度が 1.8 mol/L となった。その時の電池の起電力は何 V か。Cu²⁺, Zn²⁺ の標準電位は、それぞれ+0.34 V, -0.76 V とする。温度は 25° C、活量係数を 1 とする。

【7】《酸化還元滴定》

5.00 mmol/L の $K_2Cr_2O_7$ 溶液を用いて、酸化還元滴定により未知量の Fe(II) を定量する。

- 1. 酸化還元対 Fe^{2+}/Fe^{3+} および $Cr^{3+}/Cr_2O_7^{2-}$ について、それぞれの半反応式を記せ。また、この滴定の反応式を記せ。
- 2. 終点までに加えた滴定液の体積は 15.00 mL であった。滴定前に溶液中に含まれていた Fe(II) の物質量 (mol) はいくらか。

【8】《酸化還元滴定》

 ${
m KMnO_4}$ 溶液を用いて、酸化還元滴定により未知量の ${
m H_2O_2}$ を定量する。滴定は $0.5~{
m mol/L}~{
m H_2SO_4}$ 中で行い、滴定を通じて溶液中の水素イオン濃度は ${
m [H^+]}=0.5~{
m mol/L}$ と近似できるとする。

- 1. 酸化還元対 ${\rm H_2O_2/O_2}$ および ${\rm Mn^{2+}/MnO_4^-}$ について、それぞれの Nernst の式を記せ。標準 電位はそれぞれ $E_{\rm O}^{\rm o},\,E_{\rm Mn}^{\rm o}$ とする。
- 2. それぞれの Nernst の式を変形し、酸化還元対の濃度比にのみ依存する項と、 $[H^+]$ を含むその他の項とに分離せよ。みかけの酸化還元電位を $E_{
 m O}^{
 m o'}$ および $E_{
 m Mn}^{
 m o'}$ とする。
- 3. この実験条件における $E_{\rm O}^{\rm o'}$ および $E_{\rm Mn}^{\rm o'}$ を計算せよ。ただし、 $E_{\rm O}^{\rm o}=0.682$ V, $E_{\rm Mn}^{\rm o}=1.51$ V とする。温度は 25°C とする。
- 4. この実験条件における当量点電位 $E_{\text{equiv.}}$ を計算せよ。
- 今回のレポートの締切は5月22日(月)14:40.
 - コメント, 感想, 質問等も記載してください.
 - http://www.chem.s.u-tokyo.ac.jp/users/spectrum/lecture17_tmu.html に解法のヒントを載せます. 後日, 解答も掲載します.