以下の問(1)~(4)に答えよ.

なお, 原子番号は 24Cr, 25Mn, 26Fe, 27Co, 28Ni, 29Cu である.

- (1) 化学組成の分析に用いる以下二つの機器分析法について, 問(a), (b)に答えよ.
 - ・誘導結合プラズマ発光分析 (ICP-AES)
 - · 蛍光 X 線分析 (XRF)
 - (a) 測定原理をそれぞれ 100 字程度で説明せよ.
 - (b) それぞれの手法特有の長所を挙げよ.
- (2) Cr, Mn, Fe における中性のカルボニル (CO) 錯体について、 問(c), (d)に答えよ.
 - (c) $Cr^{(0)}$, $Mn^{(0)}$, $Fe^{(0)}$ の CO 錯体は全て 18 電子則を満たす. それぞれの分子式を記せ.
 - (d) (c)における CO 錯体の立体構造を、図1の例にならってそれぞれ示せ、

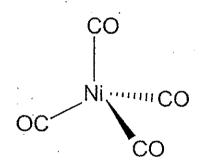


図 1. Ni(CO)4錯体の立体構造.

- (3) Fe と Co の八面体錯体について,以下の問(e)~(h)に答えよ.
 - (e) 5 重に縮退する遷移金属の 3d 軌道 $(d_{xy}, d_{yz}, d_{zx}, d_{x^2-y^2}, d_{z^2})$ は,正八面体配位の結晶 場により, e_g 軌道と t_{2g} 軌道の二つに分裂する.このとき, Fe^{3+} と Co^{3+} の取りうる d 電子配置を全て図示せよ.なお,d 電子数に注意し,各電子のスピンの向きを矢 $F(\uparrow,\downarrow)$ で区別すること.
 - (f) K_3 FeF₆, K_3 [Fe(CN)₆], K_3 [Co(CN)₆]の三つの錯体塩の磁気特性を調べたところ,遷移 金属イオンあたりの常磁性磁気モーメントが A: $0.0~\mu_B$, B: $2.3~\mu_B$, C: $5.9~\mu_B$ であった. なお, μ_B はボーア磁子である. どの錯体塩が A, B, C に該当するか同定せよ. また,判断した根拠を 150 字程度で説明せよ.
 - (g) [Fe(NCS)(H₂O)₅]²⁺を含む溶液に NaF 粉末を加えたところ, NCS⁻と F⁻の間で配位子交換が起こった. この配位子交換反応が進行する理由を Hard and Soft Acids and Bases (HSAB) 則にもとづいて 50 字程度で説明せよ.

- (h) (g)における配位子交換反応が完了すると、溶液の色が血赤色からほぼ無色へと変化した.この色の変化の理由を、次の三つの語句を用いて 150 字程度で説明せよ. [語句]
 - ・LMCT 遷移 (注:「LMCT」は Ligand-to-Metal Charge Transfer の略)
 - ・d-d 遷移
 - 電気陰性度
- (4) Cu2+の錯体・結晶について以下の問(i), (j)に答えよ.
 - (i) [Cu(en)₂]²⁺ (en: ethane-1,2-diamine) は[Cu(NH₃)₄]²⁺と類似した平面四角形の配位構造を持つ.この二つの錯体を比較すると,[Cu(en)₂]²⁺の方が高い安定性を示す.この安定性の違いを生じる効果の名称を記せ.また,[Cu(en)₂]²⁺の方が安定となる理由を熱力学的な観点から 50 字程度で説明せよ.
 - (j) 八面体配位の基本骨格を有する Cu²⁺の酸化物やフッ化物の結晶では, 周期表で隣接する Fe²⁺, Co²⁺, Ni²⁺と比較して, 対称性の低い結晶構造をとることが多い. その理由を, Cu²⁺の八面体配位の電子配置にもとづいて 100 字程度で記せ. なお, 図を用いて説明してもよい. 図に使用する文字は文字数には含めないものとする.

[Inorganic and Analytical Chemistry: Standard]

Answer the following problems (1) through (4).

The atomic numbers are 24Cr, 25Mn, 26Fe, 27Co, 28Ni, and 29Cu.

- (1) Answer the problems (a) and (b) regarding the following two methods for chemical composition analysis.
 - · Inductively coupled plasma atomic emission spectroscopy (ICP-AES)
 - X-ray fluorescence spectroscopy (XRF)
 - (a) Explain the measurement principles in approximately 50 words each.
 - (b) List the unique advantage of each.
- (2) Answer the problems (c) and (d) regarding neutral Cr, Mn, and Fe carbonyl (CO) complexes.
 - (c) All CO complexes of $Cr^{(0)}$, $Mn^{(0)}$ and $Fe^{(0)}$ satisfy the 18-electron rule. Show each molecular formula.
 - (d) Illustrate the three-dimensional structures of each CO complex in (c), following the example in Figure 1.

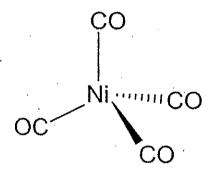


Figure 1. Three-dimensional structure of the Ni(CO)₄ complex.

- (3) Answer the problems (e) through (h) regarding the octahedral complexes of Fe and Co.
 - (e) Under the crystal field of a regular octahedral coordination, the 5-fold degeneracy of transition metal 3d orbitals $(d_{xy}, d_{yz}, d_{zx}, d_{x^2-y^2}, d_{z^2})$ is lifted, splitting into two sets: e_g orbitals and t_{2g} orbitals. Illustrate all possible d-electron configurations for Fe³⁺ and Co³⁺, paying attention to the number of d-electrons and distinguishing the spin direction of each electron with arrows (\uparrow, \downarrow) .
 - (f) When investigating the magnetic properties of K₃FeF₆, K₃[Fe(CN)₆], and K₃[Co(CN)₆], the paramagnetic moments per transition metal ion were found to be A: 0.0 μ_B, B: 2.3 μ_B, and C: 5.9 μ_B, where μ_B is the Bohr magneton. Identify which complexes correspond to A, B, and C. Furthermore, explain the reason behind your determination in approximately 75 words.
 - (g) When NaF powder was added to a solution containing [Fe(NCS)(H₂O)₅]²⁺, ligand exchange occurred between NCS⁻ and F⁻. Based on the hard and soft acids and bases (HSAB) theory, explain in approximately 30 words why this exchange reaction between NCS⁻ and F⁻ preferably proceeds.

(h) After the ligand exchange reaction described in (g) was completed, the color of the solution changed from blood-red to nearly colorless. Explain the reason for this color change using the following three terms in approximately 75 words.

[Terms]

- LMCT transition (Here, "LMCT" stands for Ligand-to-Metal Charge Transfer.)
- d-d transition
- Electronegativity
- (4) Answer the problems (i) and (j) regarding the Cu²⁺ complexes and crystals.
 - (i) [Cu(en)₂]²⁺(en: ethane-1,2-diamine) exhibits a planar square coordination structure similar to [Cu(NH₃)₄]²⁺. Comparing the two complexes, [Cu(en)₂]²⁺ is more stable. Answer the name of the effect that causes this stability difference. Furthermore, explain why [Cu(en)₂]²⁺ is more stable thermodynamically in approximately 30 words.
 - (j) Compared to Fe²⁺, Co²⁺, and Ni²⁺, which are adjacent in the periodic table, Cu²⁺ oxides or fluorides with an octahedral coordination geometry often exhibit lower symmetry crystal structures. Explain the reason based on the electron configuration of Cu²⁺ octahedral coordination in approximately 50 words. You may use figures for explanation and words used in the figures are not counted towards the word limit.