以下の間 (1) ~ (3) に答えよ. 本間では, p, V, R, T, H はそれぞれ圧力, 体積, 気体定数, 温度, エンタルピーを示す.

(1) 物質量nの理想気体を作業物質とした熱機関のp-V線図を図1に示す。このサイクルでは状態Aから状態Bへの過程は不可逆的膨張過程,状態Bから状態Cへの過程は可逆的等温圧縮過程,状態Cから状態Aへの過程は可逆的断熱圧縮過程である。ここで図中の V_A , V_B , V_C はそれぞれ状態A, 状態B, 状態C の体積, T_1 は状態A の温度, T_2 は状態B,状態C の温度である。また,この理想気体の定容熱容量

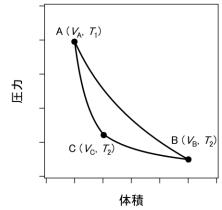


図1. 熱機関の p-V 線図

Cvは、温度に依存しないとする. 以下の間に答えよ.

(a) 状態 B から状態 C への可逆的等温圧縮過程によって系が外界にする仕事 W_{BC} は、式(1)で与えられる.

$$W_{\rm BC} = \int_{\rm B \to C} p \, \mathrm{d}V \tag{1}$$

式(1)の積分を実行して、 W_{BC} を求めよ. ただし、 $B\rightarrow C$ は状態 B から状態 $C \sim$ の可逆的等温圧縮過程を表す.

- (b) 状態 C から状態 A への可逆的断熱圧縮過程によって系が外界にする仕事を求めよ.
- (c) 状態 A のエントロピーを S_A とし、状態 B のエントロピーを S_B とする. このとき、 $S_B S_A$ を求めよ.
- (2) van der Waals は、実在気体に対してモル体積 V_m を用いて式(2)のような近似的な状態方程式を提案した.

$$p = \frac{RT}{V_{\rm m} - b} - \frac{a}{V_{\rm m}^2} \tag{2}$$

ここで、経験的なパラメーターa、b は van der Waals 定数と呼ばれ、a は分子間引力の効果、b は分子の排除体積の効果を表す.以下の間に答えよ.

(d) 表 1 に 4 種の気体、 H_2 、 H_2 O、 N_2 、 C_6 H₆の van der Waals 定数を示す.表 1 の気体 I 、気体 I 、気体 I がそれぞれどの分子であるか推定せよ.また、その理由も記せ.

	H_2	気体 I	気体Ⅱ	気体Ⅲ
$a / \text{Pa} \cdot \text{m}^6 \cdot \text{mol}^{-2}$	2.5×10^{-2}	1.8×10^{0}	5.5×10^{-1}	1.4×10^{-1}
$b / \text{m}^3 \cdot \text{mol}^{-1}$	2.7×10^{-5}	1.2×10^{-4}	3.1×10^{-5}	3.9×10^{-5}

表 1. van der Waals 定数

(e) p は T と V_m の関数であるから、p の微小変化は式(3)のように表される.

$$dp = \left(\frac{\partial p}{\partial T}\right)_{V_{m}} dT + \left(\frac{\partial p}{\partial V_{m}}\right)_{T} dV_{m}$$
(3)

このとき、式(2)に従う気体の膨張率 α を、a と b を含む式で表せ、ただし、 α は式(4)で定義される.

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p} \tag{4}$$

(3) 図 2 は Joule-Thomson 過程の概念図を示す. 上流側と下流側のピストンにそれぞれ一定の圧力 p_1 , p_2 をかけることによって (p_1 > p_2), はじめに上流側のピストンに入っていた体積 V_1 の気体は、多孔質壁を通過して、下流側のピストンに移動し、体積が V_2 となった. 気体の流れは十分にゆっくりであり、装置内の気体は外部と熱的に絶縁されている. Joule-Thomson 過程による気体の温度変化の程度を表す Joule-Thomson係数 μ は、式(4)で定義した膨張率 α と定圧熱容量 C_p を用いて式(5)のように表される.

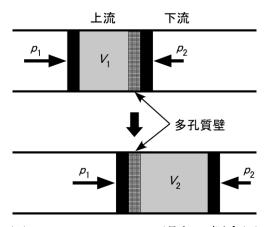


図2. Joule-Thomson 過程の概念図

$$\mu = \left(\frac{\partial T}{\partial p}\right)_{H} = \frac{V(\alpha T - 1)}{C_{p}} \tag{5}$$

以下の問に答えよ.

- (f) 熱力学第一法則を用いて、Joule-Thomson 過程が等エンタルピー過程であることを示せ.
- (g) ピストンに充填されている気体が理想気体であるとき, Joule-Thomson 過程によって, 気体の温度が変化しないことを示せ.
- (h) ピストンに充填されている気体が H_2 である場合を考える. はじめ、上流の圧力、温度、モル体積がそれぞれ p=1.0 MPa、T=300 K、 $V_m=2.5\times 10^{-3}$ m $^3\cdot$ mol $^{-1}$ のとき、Joule-Thomson 過程によって H_2 の温度は上昇するか、降下するか、変化しないか答えよ.答えに至る過程も記せ.ただし、 H_2 は式(2)の状態方程式に従うとし、問(e)で求めた α の表式を用いよ.また、R=8.3 J·K·mol $^{-1}$ とする.

Answer problems (1) through (3). In these problems, p, V, R, T, and H denote pressure, volume, gas constant, temperature, and enthalpy, respectively.

(1) Figure 1 shows a p-V diagram of a heat cycle involving a perfect gas with the amount of substance n. In this cycle, the process from state A to state B is irreversible expansion, the process from state B to state C is isothermal compression, and the process from state C to state A is reversible adiabatic compression. In Fig. 1, V_A , V_B , and V_C are volumes of state A, state B, and state C, respectively, and T_1 is temperature at state A, T_2 is

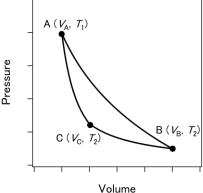


Figure 1. p-V diagram of the heat cycle

temperature at state B and state C. Assume that the heat capacity at constant volume C_V of this perfect gas is independent of temperature. Answer the problems below.

(a) When the work done by the system on the environment in the reversible isothermal compression from state B to state C is expressed as W_{BC} , W_{BC} is given by

$$W_{\rm BC} = \int_{\rm B \to C} p \, \mathrm{d}V \,, \tag{1}$$

where $B\rightarrow C$ represents the reversible isothermal compression from state B to state C. Find W_{BC} by integrating Eq. (1).

- (b) Find the work done by the system on the environment in the reversible adiabatic compression from state C to state A.
- (c) When the entropies of state A and state B are denoted as S_A and S_B , respectively, find an expression of $S_B S_A$.
- (2) Van der Waals proposed an approximated equation of state for real gas. Equation (2) shows the proposed equation of state expressed with molar volume $V_{\rm m}$.

$$p = \frac{RT}{V_{\rm m} - b} - \frac{a}{V_{\rm m}^2},\tag{2}$$

where *a* and *b* are empirical parameters called van der Waals constants, representing the effect of the intermolecular attractive force and the excluded-volume effect, respectively. Answer the problems below.

(d) Table 1 shows van der Waals constants for four gas-phase species, H₂, H₂O, N₂, and C₆H₆. Assign molecular species for gas I, gas II, and gas III. Explain the reason of your assignment.

Table 1. Van der Waals constants

	H_2	gas I	gas II	gas III
$a / \text{Pa} \cdot \text{m}^6 \cdot \text{mol}^{-2}$	2.5×10^{-2}	1.8×10^{0}	5.5×10^{-1}	1.4×10^{-1}
$b / \text{m}^3 \cdot \text{mol}^{-1}$	2.7×10^{-5}	1.2×10^{-4}	3.1×10^{-5}	3.9×10^{-5}

(e) Because p is a function of T and V_m , an infinitesimal change of p can be expressed as

$$dp = \left(\frac{\partial p}{\partial T}\right)_{V_{m}} dT + \left(\frac{\partial p}{\partial V_{m}}\right)_{T} dV_{m}.$$
(3)

Then, find an expression of the expansion coefficient α for a gas obeying Eq. (2) as an equation containing a and b, where α is defined by

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p} . \tag{4}$$

(3)Figure 2 shows the schematic the Joule-Thomson process. By applying constant pressures p_1 and p_2 ($p_1 > p_2$) to the pistons at the upstream and the downstream, respectively, a gas with a volume V_1 initially in the upstream piston moves through the porous wall to the downstream piston with a volume V_2 . The flow of gas is substantially slow, and the gas in the apparatus is thermally isolated from the environment. The Joule-Thomson coefficient μ , which expresses the extent of the temperature change through the Joule-Thomson process, is written as

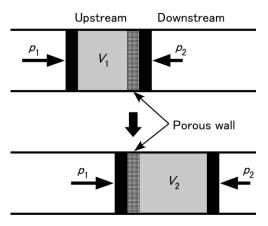


Figure 2. Schematic of the Joule-Thomson process

$$\mu = \left(\frac{\partial T}{\partial p}\right)_{H} = \frac{V(\alpha T - 1)}{C_{p}},\tag{5}$$

where α and C_p are the expansion coefficient defined by Eq. (4) and the heat capacity at constant pressure, respectively. Answer the problems below.

- (f) Show that the Joule-Thomson process is an isenthalpic process by using the first law of thermodynamics.
- (g) Show that temperature of the gas is unchanged through the Joule-Thomson process, provided that a perfect gas is filled in the pistons.
- (h) Suppose that a H₂ gas is in the pistons. Answer whether temperature of the H₂ gas should be increased, decreased, or unchanged through the Joule-Thomson process when initial pressure, temperature, and molar volume at the upstream are p = 1.0 MPa, T = 300 K, $V_{\text{m}} = 2.5 \times 10^{-3} \text{ m}^3 \cdot \text{mol}^{-1}$, respectively, provided that the H₂ gas obeys Eq. (2) and $R = 8.3 \text{ J·K·mol}^{-1}$. Write the process leading to your answer by using the expression of α obtained in problem (e).