[物理化学標準]

以下の問(1),(2)に答えよ.

- (1) 酸素分子 O₂ とオゾン分子 O₃ に関する以下の間(a)~(c)に答えよ.
 - (a) 基底状態の O₂ の分子軌道エネルギー準位図を,酸素原子 O の原子軌道と関連づけながら模式的に図示せよ,表記方法は図 1 の例を参照せよ
 - (b) 基底状態の O₂ が常磁性であることの理由を簡潔に説明せよ.
 - (c) O_3 の構造が直線形か折れ線形かを答えよ. さらに, O_3 の分子構造を図2の例にならって模式的に図示し、その理由を簡潔に説明せよ.

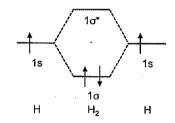


図 1. 水素分子 H₂ の分子軌道エネルギー準位図

図 2. エチレン分子 C₂H₄ の構造

(2) Chapman は、成層圏におけるオゾンの生成と分解が下記の素過程を経由して進行することを提案した.

$$O_{2} + hv \xrightarrow{J_{1}} O + O$$

$$O + O_{2} + M \xrightarrow{k_{2}} O_{3} + M$$

$$O_{3} + hv \xrightarrow{J_{3}} O + O_{2}$$

$$O_{3} + O \xrightarrow{k_{4}} O_{2} + O_{2}$$

$$(式 2)$$

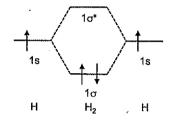
$$(式 3)$$

ここで、 j_1 、 k_2 , j_3 、 k_4 は各素過程の速度定数である。特に j_i (i=1,3)は、紫外光の光束と O_2 または O_3 の吸収断面積の積で与えられる。また、M は反応に直接関与しない任意の分子を表す。以下では、化学種 X の濃度を[X]と表す。以下の問(d)~(h)に答えよ。

(d) O と O_3 に対して定常状態近似を適用すると、定常状態における O_3 の濃度 $[O_3]_{ST}$ は (式 5) に示す 2 次方程式の解として与えられる.

$$[O_3]_{ST}^2 + \alpha [O_3]_{ST} + \beta = 0$$
 (£5)

(式 5) の係数 α および β を、 j_1, k_2, j_3, k_4 , [M], [O₂]を用いて表せ、


(e) $[O_3]_{ST}$ を 2 次方程式の解の公式を用いて求め、 $j_1, k_2, j_3, k_4, [M], [O_2]$ を用いて表せ、

- (f) 実際の成層圏において $k_2j_3[M]\gg k_4j_1$ の近似が成り立つとき, $[O_3]_{ST}$ は $[O_2]$ に比例する.この比例係数を j_1,k_2,j_3,k_4 , [M]を用いて表せ.
- (g) 太陽光に含まれる波長 250–350 nm の紫外光は, (式3) に従って O_3 に吸収される. 成層圏の O_3 の濃度が 1%だけ減少したときに、地表に到達する波長 250 nm の紫外光の強度は何倍に増加するか、有効数字一桁で答えよ. ただし、波長 250 nm の紫外光は O_3 のみが吸収(吸収断面積は 1.1×10^{-17} cm² molecule $^{-1}$)し、成層圏の O_3 の濃度はオゾン層を厚み方向に幅 1cm に圧縮して換算すると 9.1×10^{18} molecule cm $^{-3}$ となるものと仮定する. 必要があれば、exp(0.1) = 1.1, exp(1) = 2.7, $exp(10) = 2.2\times10^4$, $exp(100) = 2.7\times10^{43}$ を使ってもよい.
- (h) 成層圏大気は O₃ が存在することによって加熱されている. その理由を, (式 2) に おける分子 M の役割を考慮して, 簡潔に説明せよ.

[Physical Chemistry: Standard]

Answer problems (1) and (2).

- (1) Answer the following questions regarding oxygen molecule O2 and ozone molecule O3.
 - (a) Draw schematically the molecular orbital energy diagram of O_2 in the ground state while correlating the atomic orbitals of O according to the scheme in Figure 1.
 - (b) Explain why O₂ in the ground state is paramagnetic.
 - (c) Answer whether O₃ has a linear or bent structure. Explain the reason by drawing schematically the molecular structure of O₃ according to the scheme in Figure 2.

 $\begin{array}{c|c} 1s & 2p & & \\ \hline H & & & \\ \hline \end{array}$

Fig. 1. Molecular orbital energy diagram of H₂

Fig. 2. Molecular structure of ethylene C₂H₄

(2) Chapman proposed that production and decomposition of ozone in the stratosphere proceed via the following elementary steps:

$$O_{2} + hv \xrightarrow{j_{1}} O + O$$
 (eq 1)

$$O + O_{2} + M \xrightarrow{k_{2}} O_{3} + M$$
 (eq 2)

$$O_{3} + hv \xrightarrow{j_{3}} O + O_{2}$$
 (eq 3)

$$O_{3} + O \xrightarrow{k_{4}} O_{2} + O_{2}$$
 (eq 4)

where j_1 , k_2 , j_3 , k_4 are the rate constants of the individual elementary steps. The rate constants j_i (i = 1, 3) are given by the products of the flux of UV-light and absorption cross-section of O_2 and O_3 , respectively. M represents an arbitrary molecule which is not directly involved in the reactions. In the following, the concentration of chemical species X is represented as [X].

(d) Under the steady-state approximation to O and O₃, the steady-state concentration of O₃, [O₃]_{ST}, satisfies the following quadratic equation.

$$[O_3]_{ST}^2 + \alpha [O_3]_{ST} + \beta = 0$$
 (eq 5)

Express the coefficients α and β in terms of j_1, k_2, j_3, k_4 , [M], and $[O_2]$.

- (e) Express $[O_3]_{ST}$ in terms of j_1 , k_2 , j_3 , k_4 , [M], and $[O_2]$ by using the quadratic formula.
- (f) $[O_3]_{ST}$ is approximated to be proportional to in terms of $[O_2]$ if the relationship $k_2j_3[M]\gg k_4j_1$ holds

- in the stratosphere. Express the proportional coefficient in terms of j_1 , k_2 , j_3 , k_4 , and [M].
- (g) UV-light with the wavelength of 250–350 nm is absorbed by O_3 according to (eq 3). Now suppose that 250-nm light is absorbed only by O_3 with the absorption cross section of 1.1×10^{-17} cm² molecule⁻¹ and that the concentration of O_3 is 9.1×10^{18} molecule cm⁻³ if the thickness of the O_3 layer in the stratosphere is compressed to 1 cm. Find in one significant figure how many times the intensity of 250-nm light will increase at the Earth's surface when the concentration of O_3 decreases by 1%. Use the following values if necessary: exp(0.1) = 1.1, exp(1) = 2.7, $exp(10) = 2.2 \times 10^4$, $exp(100) = 2.7 \times 10^{43}$.
- (h) The air in the stratosphere is heated by the presence of O₃. Briefly explain the reason for the heating by considering the role of molecule M in (eq 2).