Annual Research Review

(1) Time Scale and Elementary Steps of CO-Induced Disintegration of Surface Rhodium Clusters by DXAFS

In situ time-resolved structural characterization of metal clusters nanoparticles surface and by energy-dispersive X-ray absorption fine structure (DXAFS) is essential to document their dynamic property on an atomic basis, which has been a long-term challenge to be addressed. We showed the time scale and bond sequence in the dynamic structural disintegration of Rh clusters on an Al₂O₃ surface. The dynamic processes through two intermediate states were detected by time-resolved DXAFS every 100 ms (Fig.1).

Fig.1 Rh K-edge EXAFS oscillations for Rh/Al_2O_3 during the carbonylation process at 298 K measured by DXAFS every 100 ms and an illustrative mechanism for the disintegration of Rh clusters on Al_2O_3 .

A-7) Angew. Chem. Int. Ed. 42, 4795 (2003).

(2) New Trend in Catalyst Design by Molecular Imprinting

We succeeded in preparing molecular-imprinted Rh monomer and dimer catalysts. The catalysts showed a high selectivity in alkene hydrogenation, discriminating a CH_3 group in size and position. The strategy and achievement were summarized in the review papers.

A-5) J. Mol. Catal. A: Chemical **199**, 115 (2003). A-6) J. Mol. Catal. A: Chemical **204-205**, 27 (2003).

(3) Self-Limiting Growth of Pt Nanoparticles from $MeCpPtMe_3$ Adsorbed on $TiO_2(110)$ Studied by Scanning Tunneling Microscopy

Understanding structures and electronic properties of transition metals on oxides at the atomic scale is of fundamental importance to develop their industrial applications, such as catalysts, gas sensors, and electronic devices. We examined the growth of Pt nanoparticles from MeCpPtMe₃ precursor on TiO₂(110) by STM and found that the Pt particle growth showed a self-limiting feature. From observations by STM and site-dependent STS we proposed a new mechanism for the self-limiting growth of Pt nanoparticles, where two competing pathways of decomposition of the Pt precursor at the periphery of Pt particles and its blocking with TiO_x species segregated from the interstitial of TiO₂ bulk determine the particle size (Fig.2).

Fig.2 A proposed mechanism for the self-limiting growth of Pt nanoparticles from MeCpPtMe₃ on $TiO_2(110)$.

A-12) Phys. Rev. Lett. 42, 4795 (2003).

(4) A New Chain Reaction Mechanism on A CeO₂(111) Surface Studied by In-Situ Noncontact Atomic Force Microscopy

We applied in-situ NC-AFM to image surface reactions of CH_3OH on $CeO_2(111)$. Successive NC-AFM observations of the same area under methanol atmosphere at RT indicated that the oxygen atoms adjacent to oxygen defects were active for CH_3OH dehydrogenation to provide a chain reaction, resulting in the formation of line defects (Fig.3). Once an oxygen vacancy at a specific site on the $CeO_2(111)$ surface was produced, the CH_3OH dehydrogenation propagated from the vacancy.

Fig.3 Successive atom-resolved NC-AFM images (6.5 x 6.5 nm^2) of the same area on a CeO₂(111) surface under methanol atmosphere (1.0x10⁻⁶ Pa). (b) was imaged after 91 s from (a). H and L denote methoxy and hydroxy species, respectively.

A-8) J. Phys. Chem. B 107, 11666 (2003). A-11) Phys. Chem. Chem. Phys. 5, 5349 (2003).

<u>研究ハイライト</u>

(1)時間分解 X 線吸収微細構造(XAFS)法による担持 Rh クラスターの CO 吸着構造崩壊の追跡

時間分解エネルギー分散型 XAFS(DXAFS)により、 100 ms の時間分解能で、Al₂O₃上の Rh クラスター構造 が CO 吸着に伴って Rh-Rh 結合が切断され、Rh がモノ マー状態に分散していく過程を追跡することに成功した (図1)。まず、Rh クラスターに CO が部分的に配位し(600 ms)、続いて CO が吸着し、Rh-CO が生成すると共に Rh-Rh 結合が伸びて切れ始める(3000 ms)。CO がさら に吸着し、Rh(CO)₂になると、Rh は Al 表面と強い Rh-O 結合を形成しながら、モノマー種として分散されることが 分かった(図1)。これより、20 年来も未解決であった担持 Rh クラスターの表面ダイナミック過程の詳細が初めて明 らかとなった。

A-7) Angew. Chem. Int. Ed. 42, 4795 (2003).

(2)Molecular Imprinting 金属錯体触媒の設計と触媒 作用

昨年度世界に先駆けて成功した表面を利用した金属 錯体の Molecular Imprinting 触媒に関する研究を展開 した。その主なところを下記招待総説論文にまとめた。

A-5) J. Mol. Catal. A: Chemical 199, 115 (2003).
A-6) J. Mol. Catal. A: Chemical 204-205, 27 (2003).

(3)STM 観察による有機 Pt 錯体からの均一サイズナノ 粒子の形成機構

担持金属触媒における金属微粒子の粒子サイズや 分布は触媒活性に大きく影響する。TiO₂(110)表面上に 有機 Pt 錯体(MeCpPtMe₃)を前駆体とした MOCVD (Metal Organic Chemical Vapor Deposition)法によりPt ナノ粒子を調製して、粒子サイズおよび形状などを STM により観察し、新たな粒子成長機構を見出した。 MOCVD法により吸着させたMeCpPtMe₃錯体を真空下、 450 K で加熱すると、四つ葉のクローバー型輝点を示す クラスターが形成する。輝点のサイトとSTS から、Pt 原子 を 4 つの TiO_x が取り巻くクラスター構造であることが示 唆された。一方、これらとは別に比較的サイズが均一な Pt 粒子が成長した。450 K では、TiO₂ バルクから Tiⁿ⁺(n<3)が表面に拡散し、クローバーで見られるように TiO_x suboxide (x<2)を形成すること、また、TiO_x とPt は 強い相互作用を持つことを考え、Pt クラスター上での Pt 錯体の分解とその TiO_x 種によるブロックとの 2 つの競争 過程による速度論により、1.5 nm 均一クラスター生成メ カニズムを説明することに成功した(図 2)。

図 2 TiO₂(110)表面上における MeCpPtMe₃ 錯体からの Pt ナノ 粒子生成機構

A-12) Phys. Rev. Lett. 42, 4795 (2003).

(4)非接触原子間力顕微鏡(NC-AFM)による CeO₂(111) 表面での新規連鎖反応機構の発見

酸化物表面でのメタノール脱水素触媒反応速度は通 常 v=k[CH₃O(a)][O(s)]で表され、表面酸素原子 O(s)の 濃度に比例して、反応は表面のどの O(s)でも万遍なく 進むとされていた。CeO₂(111)上のメタノール脱水素反 応過程を NC-AFM により、連続観察を行ったところ、局 所的に反応が進行して、多原子欠陥が形成されること が分かった(図 3)。このことから、メタノールとの反応によ り酸素欠陥が形成されると、その隣りの O(s)が活性とな り、次のメタノールと反応し、新たな酸素欠陥が形成さ れ、またその隣りの O(s)が優先的に反応するというよう に、連鎖的に反応が進行することを見出した。

図 3 CeO₂(111)上のメタノール脱水素反応過程の連続 NC-AFM 像 (6.5 x 6.5 nm²)

> A-8) J. Phys. Chem. B **107**, 11666 (2003). A-11) Phys. Chem. Chem. Phys. **5**, 5349 (2003)

1. 原著論文

(1) Refereed Journals

- 1) Y. Iwasawa, "In Situ Charactarization of Supported Metal Catalysts and Model Surfaces by Time-Resolved and Three-Dimensional XAFS Techniques" *J. Catal.* **216**, 165-177 (2003).
- 2) S. Takakusagi, K. Fukui, F. Nariyuki, and Y. Iwasawa, "STM Study on Structures of Two Kinds of Wide Strands Formed on TiO₂(110)" *Surf. Sci.* **523**, L41-L46, (2003).
- 3) Y. Yuan, K. Tsai, H. Liu, and Y. Iwasawa, "Selective Methanol Conversion to Methylal on Re-Sb-O Crystalline Catalysts: Catalytic Properties and Structural Behavior" *Topics Catal*, **22**, 9-15 (2003).
- 4) R. Tero, K. Fukui, and Y. Iwasawa, "Atom-Resolved Surface Structures and Molecular Adsorption on TiO₂(001) Investigated by Scanning Tunneling Microscopy" *J. Phys. Chem. B* **107**, 3207-3214 (2003).
- 5) M. Tada and Y. Iwasawa, "Design of Molecular-Imprinting Metal-Complex Catalysts" *J. Mol. Catal. A: Chemical* **199**, 115-137 (2003).
- 6) M. Tada and Y. Iwasawa, "Approaches to Design of Active Structures by Attaching and Molecular Imprinting of Metal Complexes on Oxide Surfaces" J. Mol. Catal. A: Chemical 204-205, 27-53 (2003).
- A. Suzuki, Y. Inada, A. Yamaguchi, T. Chihara, M. Yuasa, M. Nomura, and Y. Iwasawa, "Time Scale and Elementary Steps of CO-Induced Disintegration of Surface Rhodium Clusters" *Angew. Chem. Int. Ed.* 42, 4795-4799 (2003).
- 8) Y. Namai, K. Fukui, and Y. Iwasawa, "Atom-Resolved Noncontact Atomic Force Microscopic Observations of CeO $_2(111)$ Surfaces with Different Oxidation States: Surface Structure and Behavior of Surface Oxygen Atoms" *J. Phys. Chem. B* **107**, 11666-11673 (2003).
- Y. Namai, K. Fukui, and Y. Iwasawa, "Atom-Resolved Noncontact Atomic Force Microscopic and Scanning Tunneling Microscopic Observations of The Structure and Dynamic Behavior of CeO₂(111) Surfaces" *Catal. Today* 85, 79-91 (2003).
- 10) Y. Tanizawa, T. Shido, W-J. Chun, K. Asakura, M. Nomura, and Y.Iwasawa, "Three-Dimensional Structure Analyses of Cu Species Dispersed on TiO₂(110) Surfaces Studied by Polarization-Dependent Total-Reflection Fluorescence X-ray Absorption Fine Structure (PTRF-XAFS)" *J. Phys. Chem. B* **107**, 12917-12929 (2003).
- 11) K. Fukui, S. Takakusagi, R. Tero, M. Aizawa, Y. Namai, and Y. Iwasawa, "Dynamic Aspects and Associated Structures of TiO₂(110) and CeO₂(111) Surfaces Relevant to Oxide Catalyses" *Phys. Chem. Chem. Phys.* **5**, 5349-5359 (2003).
- S. Takakusagi, K. Fukui, R. Tero, F. Nariyuki, and Y. Iwasawa, "Self-Limiting Growth of Pt Nano-Particles from MeCpPtMe₃ Adsorbed on TiO₂(110) Studied by Scanning Tunneling Microscopy" *Phys. Rev. Lett.* 91, 066102/1-066102/4 (2003).
- K. Onda, Y. Iwasawa, and A. Wada, "Vibrational Relaxation of Adsorbate and Adsorbent in the CO-Adsorbed DM-20 Zeolite System" *Chem. Phys. Lett.* **370**, 437-442 (2003).
- 14) K. Matsuzawa, T. Shido, and Y. Iwasawa, "Reversible Structure Transformation of Antimony Oxides on SiO₂ Relevant to Selective Catalytic Oxidation of Ethanol" *Langmuir* 19, 2756-2762 (2003).

- 15) N. Viswanadham, T. Shido, T. Sasaki, and Y. Iwasawa, "Formation of New Re Clusters in HZSM-5 and Their Catalytic Property in Propene Selective Oxidation/Ammoxidation Reactions" *Stud. Surf. Sci. Catal.* **145**, 189-192 (2003).
- 16) M. Kiguchi, H. Inoue, K. Saiki, T. Sasaki, Y. Iwasawa, and A. Koma, "Electronic Structure of Alkali Halide-Metal Interface: LiCl(001)/Cu(001)" *Surf. Sci.* **522**, 84-89 (2003).

(2) その他

- 1) F. Nakagawa, T. Shido, T. Sasaki, and Y. Iwasawa, "Site Determination of Mo Cation Located in HY Zeolite" *PF Activity Report* **#20**, Chemistry 20 (2002).
- 2) Y. Izumi, F. Kiyotaki, K. Aika, T. Sugihara, T. Tatsumi, Y. Tanizawa, T. Shido, and Y. Iwasawa, "Structure of Low Concentration of Vanadium on/in Titanium Oxide Determined by X-ray Absorption Fine Structure Utilizing Fluorescence Spectrometry" *PF Activity Report* **#20**, Chemistry 27 (2002).
- T. Kume, T. Sasaki, and Y. Iwasawa, "A Novel Pd Catalyst Attached on a SiO₂ Surface via Immobilized Ionic Liquid" *PF Activity Report* #20, Chemistry 28 (2002).
- 4) T. Kusakari, T. Sasaki, and Y. Iwasawa, "EXAFS Analysis of Zeolite Supported Rhenium Oxide Catalyst for Direct Phenol Synthesis" *PF Activity Report* #20, Chemistry 29 (2002).
- 5) M. Tada, T. Sasaki, and Y. Iwasawa, "A Novel Molecular-Imprinted Rh-Monomer Catalyst Attached on a SiO₂ Surface" *PF Activity Report* **#20**, Chemistry 30 (2002).
- 6) A. Suzuki, Y. Inada, A. Yamaguchi, T. Chihara, M. Nomura, and Y. Iwasawa, "Time-Resolved Energy-Dispersive XAFS Study on the Structural Changes of Rhodium Clusters on Alumina Surface during CO Adsorption" *PF Activity Report* **#20**, Chemistry 31 (2002).
- 7) T. Tsutumi, H. Yasufuku, N. Matsudaira, H. Niimi, S. Suzuki, W. J. Chun, K. Asakura, Y. Kitajima, and Y. Iwasawa, "Development of EXPEEM System" *PF Activity Report* **#20**, Chemistry 70 (2002).
- 8) M. Tada, T. Sasaki, and Y. Iwasawa, "Molecular-Imprinted Metal Complexes for Design of Catalytic Structures" *Abstr.* 226th ACS National Meeting, INOR-447 (2003).
- Y. Iwasawa, K. Fukui, S. Takakusagi, A. Suzuki, and M. Nomura, "Structure and Reactivity of Metal Clusters at Oxide Surfaces Characterized by Time-Resolved DXAFS and STM" *Abstr.* 226th ACS National Meeting, PHYS-072 (2003).
- 10) 生井 勝康,福井 賢一,岩澤 康裕:「非接触 AFM 及び STM による CeO₂(111)表面での酸素欠陥構造に 依存した表面酸素原子の動的挙動及び吸着分子の反応性に関する研究」 触媒 45,178-180 (2003).
- 11) 唯 美津木, 佐々木 岳彦, 岩澤 康裕: 「Molecular Imprinting 法を用いた新規固定化 Rh アミン錯体触媒の設計と水素化触媒特性」 触媒 45,474-476 (2003).

2. 総説·解説

- 1) 岩澤 康裕: 「博士課程学生の徹底英語教育」 化学 58, 11 (2003).
- 2) 福井 賢一, 生井 勝康, 岩澤 康裕:「非接触原子間力顕微鏡による金属酸化物表面の局所構造とその動 的変化の観察」 セラミックス 38,812-815 (2003).
- 3) 堤 哲也, 大南 祐介, 朝倉 清高, 安福 秀幸, 嘉藤 誠, 境 悠治, 北島 義典, 岩澤 康裕: 「Wien Filter 型 EXPEEM による Au/Ta の光電子エネルギー選別像と分散像の観測」 表面科学 24, 509-511 (2003).

3. 著書

- K. Fukui, R. Lo, and Y. Iwasawa: "Visualization of the Atomic-scale Structure and Reactivity of Metal Carbide Surfaces Using Scanning Tunneling Microscopy "CARBON ALLOYS ed. by E. Yasuda, M. Inagaki, K. Kaneko, M. Endo, A. Oya and Y. Tanabe, Elsevier Science (2003) pp. 257-267.
- 2) 岩澤 康裕: 「はじめに-触媒化学の貢献と期待」先端化学シリーズ I, 丸善 (2003) pp. 119-121.
- 3) 岩澤 康裕: 「触媒表面科学-現状と展望」先端化学シリーズ I, 丸善 (2003) pp. 122-133.
- 4) 岩澤 康裕, 北川 禎三, 浜口 宏夫 (訳):「化学・生命科学系のための物理化学」東京化学同人 (2003).

4. その他

1) 岩澤 康裕: 「触媒化学の進歩と夢」化學工業 54, 11-16 (2003).