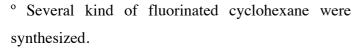
All-cis 1,2,3,4,5,6-hexafluorocyclohexane is a facially polarized cyclohexane

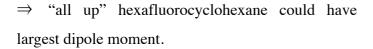
Keddie, N. S.; Slawin, A. M. Z.; Lebl, T.; Philp, D.; O'Hagan, D.* Nat. Chem. 2015, 7, 483–488.


1. Introduction

- 1.1. Fluorinated compounds
- Fluorine is often used to modulate the properties of organic materials.
 - \rightarrow Medicine, pesticide, polymer (PTFE etc.), electric materials (PVDF etc.) and so on...
- C-F bond is the strongest and most polarized.
 - \rightarrow Fluorinated compounds has polar hydrophobic properties.
- Polar molecules are important for organic electronics application.
- 1.2. Cyclohexane
- In linear alkane C-F bonds tend to orientate away from each other due to dipolar repulsion.
 - \rightarrow If the conformation was fixed as aligned, highly polar organic molecules would result.

• Good core structural motif defined by its clear conformational preference.

 \rightarrow It is suitable core structure to align C-F bonds for polar molecules.


1.3. Previous work

• All-*syn* tetrafluorocyclohexane^{1,2}

 \rightarrow dipole moment μ = 4.9 (P1) - 5.2 (P2)

• "4 up 2 down" hexafluorocylcohexane (**P3**) was synthesized from benzene³

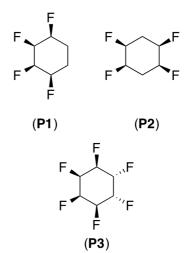


Figure 1. Prevously synthesized compounds

1.4. This work

• All-cis 1,2,3,4,5,6-hexafluorocyclohexane was synthesized.

• Molecular structure and crystal packing was analyzed from X-ray crystallography.

• Dipole moment and energy barrier of flipping was calculated from computational analysis and NMR study.

- 1.5. Isomers of hexafluorocyclohexane
- 8 configurations and a total 15 possible conformational isomers.

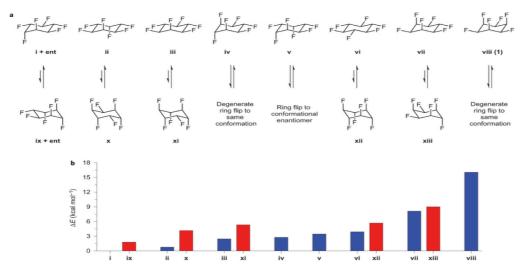


Figure 2. Isomers of hexafluorocyclohexane and its ground energies

 \rightarrow All-cis ("all-up") hexafluorocyclohexane has highest ground energy (> 15 kcal mol⁻¹ larger than most stable isomer.)

2. Results and Discussion

2.1. Synthesis

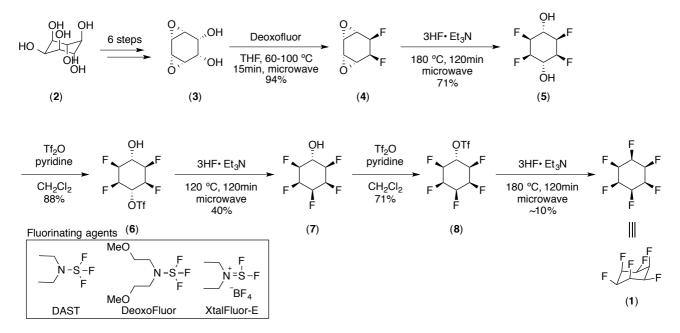


Figure 3. Synthetic route

- Synthesis was started from *myo*-inositol (2) via key intermediate (3)
- The strategy is stereospecific conversion of C-O to C-F bonds via $S_N 2$ reactions occurring with

inversions of configuration.

• Direct deoxofluorination of compound **5** was failed to obtain compound **1** with DAST, Deoxofluor, XtalFluor-E.

• Due to large steric and electronic repulsion, elimination reaction might proceeded during last step.

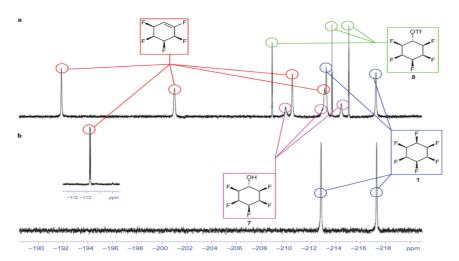


Figure 4. NMR spectra of reaction mixture of last step and product

• From NMR spectra of reaction mixture of last step, there are unreacted compound **8**, pentafluoroalcohol **7**, pentafluoro alkene and desired compound **1**.

• Pentafluoroalcohol 7 was generated via fluorolysis of triflyl group rather than fluoride ion displacement.

 \rightarrow Unusual reaction course for triflyl group, which indicates the difficulty in achieving the final substitution reaction.

• Total yield of compound **1** from **2** was ca. 2% (0.8 mg).

2.2. Structural analysis

• Compound **1** remained classic chair conformation for cyclohexane ring.

• Six C-F bonds locate alternating axial and equatorial position.

• The intermolecular axial/equatorial vicinal F...F distances $(F_{ax} - F_{eq})$ are shorter than the triaxial F...F distances $(F_{ax} - F_{ax})$

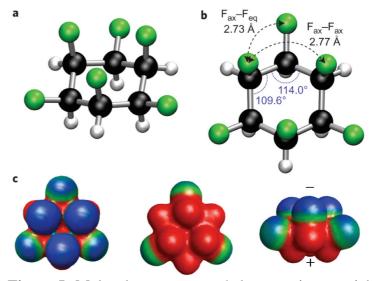


Figure 5. Molecular structure and electrostatic potential

 \rightarrow Larger tension between the axial/equatorial fluorines.

 \rightarrow These fluorines are forced back as the three axial fluorines become aligned to make overall dipole increased.

• The axial fluorines present a negative face of electrostatic potential and the axial hydrogen present a positive face of it.

 \rightarrow The compound is facially polarized and has bipolar aspect.

• The value of dipole moment $\mu = 6.2 \text{ D}$ (calc. M11/611G(2d,p)), which is highest value of dipole among non-ionic, aliphatic or aromatic organic compound.

2.3. Crystal structure

• The individual molecules stack on top of one another in a manner consistent with electrostatic attraction between the non-equivalent faces of the cyclohexane.

2.4. Energy barrier of flipping

• From NMR study, the energy barrier to degenerate ring-flipping is $\Delta H^{\ddagger} = 13.3 \pm 0.43$ kcal mol⁻¹, $\Delta S^{\ddagger} = -3.8 \pm 1.6$ cal mol⁻¹K⁻¹. (cyclohexane $\Delta H^{\ddagger} = 10.8$ kcal mol⁻¹, $\Delta S^{\ddagger} = 2.8$ cal mol⁻¹K⁻¹)

 \rightarrow The energy barrier is only a little higher than cyclohexane and suggested that the energy of ground state chair and transition structure are both raised.

3. Conclusion

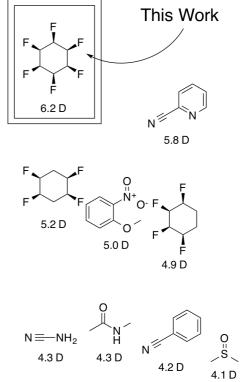


Figure 6. Dipole moment of organics

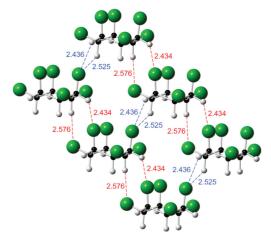


Figure 7. Crystal structure

- All-cis 1,2,3,4,5,6-hexafluorocyclohexanae was synthesized.
- The compound has quite larger dipole moment and bipolar aspect.

4. Reference

[1] Hagan, D. et al. Chem. Commun., 2011, 47, 8265 - 8267

- [2] Hagan, D. et al. Chem. Commun., 2012, 48, 9643 9645
- [3] Hagan, D. et al. Angew. Chem. Ind. Ed., 2012, 51, 10086 10088