A molecular shuttle that operates inside a metal–organic framework

Kelong Zhu, Christopher A. O'Keefe, V. Nicholas Vukotic, Robert W. Schurko* and Stephen J. Loeb* *Nat. Chem.* **2015**, DOI: 10.1038/NCHEM.2258

1. Introduction

- Molecular Shuttle: An interlocked molecular assembly in which a macrocyclic ring is able to move back and forth between two recognition sites.¹
- Mechanically Interlocked Molecules (MIMs): Mimic the motion of macroscopic switches and machines and prototype for the construction of a variety of more sophisticated molecular assemblies.

Fig. 1. Molecular shuttle operating in acetone solution. The electron-poor cyclophane macrocycle (blue) moves to and fro (shuttles) between the two electron-rich hydroquinol rings (red), but is prevented from sliding off the polyether chain because of the large size of the triisopropylsilyl groups (green) that act as stoppers.

Problem:

No method to arrange 'smart' molecules in patterns

or in solid phases

- => Difficult to organize and monitor the movement.²
- This work:

A new Metal-Organic Frameworks (MOFs): **UWDM-4**, which contains a shuttle between two linking struts, is designed to study the dynamic behavior of shuttle.

Results and Discussion Designing of MOFs

Scheme 1. Synthetic route of MOFs.

- Key of the design is the cross-bar, which separate the carboxylate struts from axel and wheel.
- 24C8 interacts with benzimidazole groups by O-H hydrogen-bond.
- Four carboxylate groups is coordinated to a Zn₄O cluster. The triphenyl struts form the sides of a Fig. 3. cube, and the benzimidazole containing

crossbars connect the cubes at the benzimidazole phenyl rings.

- Two tri-phenyl groups share one linker are perpendicular to each other in MOF structure (Fig. 3a) and form two non-covalently-connected cages separately. (Fig. 3b)
- The carbon atoms at the 2-positions of the benzimidazole rings of **5** were enriched to

Fig. 3. Structure of UWDM-4·HBF₄ unit.

50% ¹³C by using ¹³C-labelled 1,4-benzenedialdehdye.

- ¹³C (mark as * in 2, 3, 5) is used to identify the shuttling motion in the MOF by ¹³C Solid-State NMR.
- A single resonance (*) was observed for both the 'occupied' and 'empty' sites at room temperature in ¹³C-NMR spectroscopy. (Fig. 4)
- At lower temperature, two separate resonances for the occupied and empty recognition sites become visible. (Fig 4, indicates by arrows)
- 24C8 macrocycle undergoes rapid molecular shuttling between two benzimidazole recognition sites.
- N,N,N',N'-tetramethylnaphthalene-1,8-diamine (proton-sponge) in ethanol is added to neutralize the charge in benzimidazolium group. It is monitored by solid-state ¹⁹F NMR spectroscopy until no BF₄⁻ is observed (Fig. 5). Therefore, the **24C8** will not be fixed in charged place and will shuttle inside lattice.
- Structures do not change so much after removing the HBF₄ molecule from the MOF structure and confirmed by XRD, IR and SEM.

2.2 Molecular Shuttle Study

- At high temperatures, only a single peak (154.0 ppm) in ¹³C Solid-State NMR is observed.
- When the temperature is lowered this peak broadens, coalesces and then splits into two distinct resonances (152.7 and 155.2 ppm) at the lowest temperature.
- Averaging of the signals from the two recognition sites: one that is open and another that is occupied by a 24C8 macrocycle.
- Rapid molecular shuttling of the macrocyclic ring between the two

Fig. 6. ¹³C-NMR spectra (left, experimental; right, simulation) of a ¹³C-enriched sample of UWDM-4

recognition sites is occurring inside the MOF

- \triangleright When the sample is cooled, the rate of this translational motion slows and both occupied and unoccupied sites are observed.
- An Eyring plot of In (k/T) versus 1/T indicates the rate of shuttling inside the MOF lattice is \triangleright 283 s⁻¹ at 298 K with an activation barrier (ΔG^{\ddagger}) to this translational motion of 14.1 kcal mol⁻¹.
- Comparing the energy barrier and rate of shuttling in the solid state with that in solution (7.7 \triangleright kcal mol⁻¹ and 1.4×10^7 s⁻¹), the solid one is much higher.
- Both enthalpic (ΔH) and entropic (ΔS) contributes to the high activation barrier. \triangleright
- ΔH^{\ddagger} : surrounding framework will induce steric and electrostatic hindrances to the motion. \triangleright
- ΔS^{\ddagger} : faster collisions in solution is to induce a wider range of ring conformations and \geq increased relative shuttling motions of the rings and axles

3. Conclution

- UWDM-4, a MOF material with a molecular shuttle as part of its internal structure is ≻ synthesized.
- Solid-State NMR experiments demonstrate that the macrocyclic ring can undergo \geq large-amplitude translational motion along the rigid skeleton of the MOF to which it is interlocked.

4. References

(1) Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131–5133. (2) Deng, H.; Olson, M. A.; Stoddart, J. F.; Yaghi, O. M. Nat. Chem. 2010, 2, 439-443.

5. Appendix

N,N,N',N',-tetramethylnaphthalene-1,8-diamine

¹³C-labelled 1,4-benzenedialdehdye

