Journal Club 20131205

Kento Inoue

Stereoselective Total Synthesis of Hainanolidol and Harringtonolide via Oxidopyrylium-Based [5 + 2]

Cycloadditon

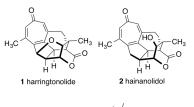
Zhang, M.; Liu, N.; Tang, W^{*} J. Am. Chem. Soc. 2013, 135, 12434-12438

1. Introduction

1.1 Harringtonolide and Hainanolidol

- •Representative Cephalotaxus norditerpenes
- ⇒fused tetracyclic carbon framework
- tropone ring D, bridged lactone (+ THF ring)
- •Harringtonolide 1: first isolated from
- *C.harringtonia* in 1978¹
- Hainanolidol 2: isolated from C. haiananensis in 1979²
- \Rightarrow **1**: antineoplastic and antiviral active
- **2**: inactive
- \Rightarrow THF ring is important?
- •Harringtonolide 1: selective anticancer activity³

1.2 Previous Work


- The first synthesis of hainanolidol 2 was realized by Mander's group in 1998⁴
- \Rightarrow Extremely low yield due to stereoisomerization
- Biomimetic transformation from 2 to 1 by Pb(OAc)₄-mediated transannular oxidation reported.⁵
- \Rightarrow Validated only by IR and MS

1.3 Author's motivation

- Confirmation the biomimetic transformation reaction
- Evaluation of the therapeutic potential of 1 and related natural products

1.4 Strategy

- Tropone
- \Rightarrow Cleavage of ether bridge
- •Fused tetracyclic carbon framework
- ⇒Oxidopyrylium-based [5+2] cycloaddition
- •Decalin moiety
- \Rightarrow Stereoselective installation of functional groups
- Oxidative ring expansion of furan

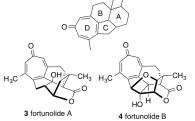


Figure 1. Representative Cephalotaxus Norditerpenes

Scheme 1. Retrosynthetic Analysis of 1 and 2

CO

tive installation of four

[5+2] cvcloadditior

9

itional contiguous s

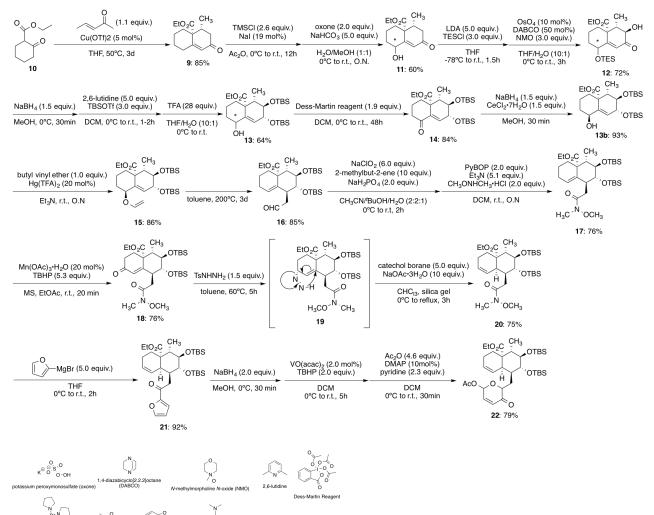
EtO₂C

EtO₂C

OTBS

OTRS

OTBS


OTBS

oxidative ring expansion of furan to oxidopyrylium

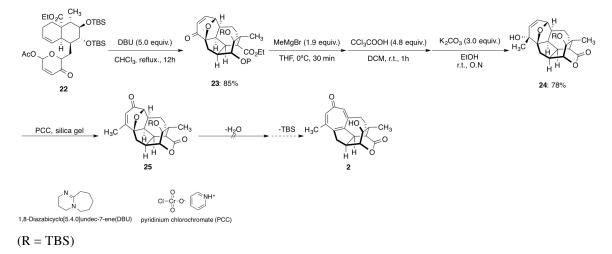
2. Result and Discussion

First, decaline derivative with six contiguous stereogenic centers preparated.

Scheme 2. Preparation of a Decalin Derivative with Six Contiguous Stereogenic Centers

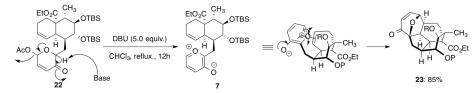
- * $(\alpha/\beta) = 4:1$
- •Starting material: commercially available ethyl 2-oxocyclohexanecarboxylate (13500 yen/25 g @Aldrich)
- •10→9: Robinson annulation
- •9 \rightarrow 13b: oxidation and reduction process to obtain desired triol 13b
- •15→16: Claisen rearrangement
- •19→20: [3,3]-Sigmatropic rearrangement
- •20→21: Weinreb ketone synthesis
- •21 \rightarrow 22: VO(acac)₂-catalyzed oxidative ring expansion

and 2


formation of

tropone and lactone

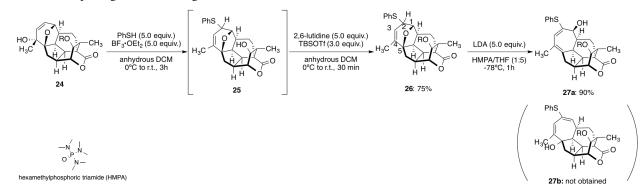
Journal Club 20131205


Then, tetracyclic carbon framework was formed via [5+2] cycloaddition.

Scheme 3. [5 + 2] Cycloadditon and Attempts for the Synthesis of Tropone by Dehydration

•22→23: [5+2] cycloaddition (*Scheme 4*)

Scheme 4. Mechanism of [5+2] cycoaddition

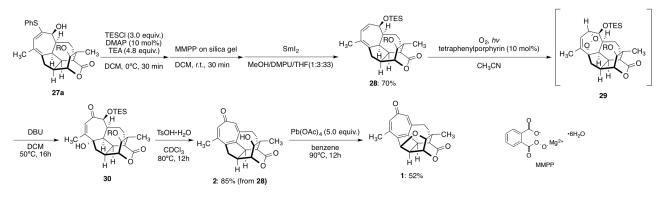


•23→24: lactone formation

•25 \rightarrow 2: Direct dehydration process could not be achieved.

 \Rightarrow Author developed two-step protocol to open the ether bridge (Scheme 5)

Scheme 5. Opening of Ether Bridge


3

Kento Inoue

- 24 \rightarrow 26:Installation of phenylthio group through a Lewis acid-mediated S_N1' substitution
- •26 \rightarrow 27: Deprotonation of α -position of phenyl sulfide by LDA and cleavage of ether bridge
- ⇒There were two possibilities(27a, 27b), but HSQC spectra indicated that only diene 27a was formed
- by the cleavage of the C(5)–O bond because of resonance of allyl anion.

Finally, Tropone was formed and desired product was obtained.

Scheme 6. Formation of Tropone and Completion of the Synthesis of 1 and 2

- •27a \rightarrow 28: Removal of PhS via oxidation by MMPP to convert sulfoxide and reduction with SmI₂
- •28 \rightarrow 29: [4+2] cycloaddition of diene 28 with singlet oxygen
- •29→30: Kornblum–DeLaMare rearrangement
- •30 \rightarrow 2: Double elimination of water to prepare tropones in 2 and 1
- •2 \rightarrow 1: Pb(OAc)₄-mediated transannular oxidation

1 and 2 were confirmed by ¹H and ¹³C NMR of reported natural product. \Rightarrow The biomimetic transformation from 2 to 1 was confirmed by total synthesis for the first time

3. Conclusion

- •The total synthesis of hainanolidol and harringtonolide were realized.
- •Developed new synthetic route offters the flexibility to access other members of Cephalotaxus norditerpenes and its analogues.
- •The biomimetric transformation from hainanolidol to harringtonolide was confirmed for the first time.

4. Reference

- 1. Buta, J. G.; Flippen, J. L.; Lusby, W. R. J. Org. Chem. 1978, 43, 1002.
- 2. Sun, N.-J.; Xue, Z.; Liang, X.-T.; Huang, L. Acta pharm. Sin. 1979, 14, 39 3. Evanno, L.; Jossang, A.; Nguyen-Pouplin, J.; Delaroche, D.; Herson, P.; Seuleiman, M.; Bodo, B.; Nay, B. Planta Med. 2008, 74, 870.
- 4. Frey, B.; Wells, A. P.; Rogers, D. H.; Mander, L. N. J. Am. Chem. Soc. 1998, 120, 1914. 5. Xue, Z.; Sun, N.-J.; Liang, X.-T. Acta Pharmacol. Sin. 1982, 17, 236.