1. Introduction

- Nitrogen fixation has been important subject because it is essential to the input of nitrogen from N₂ into the global biogeochemical N-cycle.
- Haber–Bosch process is a practically-applied method of nitrogen fixation, which consumes much energy for high temperature and pressure.
- In contrast, nitrogenase produces ammonia from dinitrogen at ambient conditions.
- Previous studies, including density functional theory (DFT) calculations, have proposed that transformation by nitrogenase is mediated by two iron atoms in the [Fe₇MoS₉C] core structure, so called FeMo-cofactor, through a series of N_xH_y bridged intermediates (Figure 1).¹
- In one-iron system, reduction process of nitrogen was studied and two probable mechanism were suggested; distal and alternative mechanism.² *However*, there are no report about reduction process in multi-iron system.

Figure 1. Hypothetical diironsites of ammonia production from dinitrogen. Possible routes are shown for the FeMo-cofactor (upper) and diiron model complex of this work.

In this work, authors synthesized new diiron complex with the bidentate ligand benzene-1,2-dithiolate (bdt), to realize and determine the sequence of protonation and reduction of hydrazine to ammonia.

2. Results and Discussion

2.1. Synthesis, characterization and interconversion of diiron N_xH_y complexes (Scheme 1).

- First the diiron precursor **1** was synthesized in a reported manner using Li₂(bdt).
- bdt ligand: Able to act either as a dianionic (in normal system) or a π-radical monoanionic ligand (in electron-deficient system, C3–C4 and C5–C6 bonds get shorter than other C–C bonds) ³ —> Able to support variable coordination geometries of nitrogen
- Electron deficiency of 1 according to shorter C–C bond —> Good candidate as a nitrogenase model
- Asymmetrical μ - η^2 : η^4 structure of bdt
- Next **1** was converted to **2a** by addition of anhydrous hydrazine.
- 2a has a symmetrical structure according to ¹H NMR.
- ¹⁵N NMR of ¹⁵N-labeled **2a** indicated two equivalent *sp*²-hybridized nitrogen atoms.

Scheme 1. Synthesis of diiron $N_x H_y$ complexes and their methyl-substituted analogues.

- Due to high air sensitivity and good solubility of 2a, XRD spectrum of 2a cannot be taken.
 —> For further analysis, 2a was oxidized by ferrocenium hexafluorophosphate to afford 2a[PF₆].
- According to XRD analysis of **2a**[PF₆] (Figure 2a) ...
 - > N_2H_2 ligand coordinating [Fe₂S₂] scaffold in a *cis* fashion
 - ▶ Long Fe…Fe distance (3.176 Å): Absence of bonding interaction
 - ➢ N–N distance (1.312 Å): Close to the value of end-on bridging N(sp²)=N(sp²) double bond
 - Distance of C–C in bdt: Consistent —> Dianionic bdt ligand —> Electron deficiency on diiron center was disappeared.
- Analysis on **2a** and **2a**[PF₆] above proved N₂H₂ ligand is diazene rather than the hydrazido(2-) ligand.
- Then auther couducted protonation-induced reduction on 2a using Lut•HBAr₄ (Ar = Ph or 3,5-bis(trifluoromethyl)phenyl, abbreviated to Ar^F) as a proton source to obtain 3a[BAr₄]
 - > Valences of iron atoms rised: $Fe^{II}-Fe^{II}$ (2a) —> $Fe^{III}-Fe^{III}$ (3a[BAr₄])
- Solid state structure of $3a[BAr_4^F]$ revealed μ - η^1 : $\eta^2 N_2H_3^-$ ligand bridging diiron center (Figure 2b).
 - Shorter Fe–Fe distance (2.6990 Å): Existence of bonding interaction
 - ► Longer N–N bond than that of **2a** (1.402 Å): Single bond

Figure 2. Oak Ridge thermal ellipsoid plot (ORTEP) diagrams, with the thermal ellipsoids shown at a 50% probability level. Anions, one THF molecule and hydrogen atoms on carbons are omitted for clarity.

- ▶ Fe–N distances (Fe2–N1 1.892 Å, Fe1–N1 1.907 Å, Fe2–N2 1.937 Å): *sp*³-hybridized N
- ¹⁵N {¹H} NMR analysis of ¹⁵N-labeled 3a[BPh₄] showed two resonances, which split into doublet (111.58 ppm) and triplet (33.05 ppm) without ¹H decoupling. —> Presence of –NH and –NH₂
- Further reduction and protonation of **3a**[BPh₄] was conducted using cobaltocene (CoCp2) and Lut•HBPh4 to obtain **4a**[BPh₄] with release of NH₃ (80%, determined by ¹H NMR).
- Crystal structure of 4a[BPh₄] showed a bridging NH₂⁻ ligand binding to thd diiron centers (Figure 2c).
 - ▶ Fe–N distances (1.924 and 1.932 Å): Coordination of *sp*³-hybridized nitrogen to iron
 - ▶ Fe–Fe distance (2.4423 Å): Bonding interaction
- ¹⁵N {¹H} NMR analysis of ¹⁵N-labeled 4a[BPh₄] showed one resonance, which split into triplet without ¹H decoupling. —> Presence of NH₂⁻

2.2. Study of the reaction process from 3a⁺ to 4a⁺ by DFT calculation and methylhydrazine experiment

- DFT model calculation were performed to study the reaction process from $3a[BPh_4]$ to $4a[BPh_4]$.
 - > To make calculation simple, Cp* was modelled by Cp (η^5 -C₅H₅).
 - Cationic part of $3a[BPh_4] \longrightarrow [CpFe(\mu-\eta^1:\eta^2-bdt)(\mu-\eta^1:\eta^2-NH_2-NH)FeCp]^+ (3am^+)$ Cationic part of $4a[BPh_4] \longrightarrow [CpFe(\mu-\eta^2:\eta^2-bdt)(\mu-NH_2)FeCp]^+ (4am^+)$
- According to the free energy in solution (Scheme 2),
 - Cleavage of the N–N bond to liberate NH₃ occurs through HN…NH rather than H₂N– NH₂ moiety.
 - > Ammonia release was mainly derived from the umbridged NH_2 of **3am**⁺.
- Methylhydrazine experiment supported that ammonia release occurs from unbridging NH_2 of $N_2H_3^-$ experimentally.

Scheme 2. Computed minimum free-energy pathway for the transformation of 3am⁺ to 4am⁺. Relative free energis in solution (ΔG_R) and in the gas phase (in parantheses) are in kcal mol⁻¹.

Ammonia release from complex 4a[Bh₄] in water (Table 1). 2.3.

According to Table 1, both water as a weakly acidic proton source (to suppress generation of hydrogen) and strong reductant are crucial for good yield.

3. Conclusion

Authors designed and synthesized a new diiron complex

Table 1. Ammonia production from complex **4a**[BPh₄] in the presence of reducing agent and proton source.

Entry	Reducing agent	E _{1/2} (V)*	Proton source	Yield of NH ₃ (%)
1	CoCp ₂ (2 eq)	-1.15	Lut•HBPh ₄ (2 eq)	46
2	CoCp ₂ (6 eq)		Lut•HBPh ₄ (6 eq)	51
3	CoCp ₂ (2 eq)		H ₂ O (50 eq)	98
4	CrCp ₂ (2 eq)	-0.88	H ₂ O (50 eq)	8
5	CoCp* ₂ (2 eq)	-1.87	H ₂ O (50 eq)	96
6	CrCp* ₂ (2 eq)	-1.35	H ₂ O (50 eq)	93
7	CoCp ₂ (2 eq)		CH ₃ OH (50 eq)	15
8	None		H ₂ O (50 eq)	Trace
9	CoCp ₂ (2 eq)		None	4

 $[Cp^*Fe(\mu-\eta^2:\eta^4-bdt)FeCp^*]$ (1). Stepwise protonation and reduction of hydrazine to ammonia was realized, which proposed the process of nitrogen fixation.

⁽a) Kaestner, J.; Blochl, P. E. J. Am. Chem. Soc. 2007, 129, 2998–3006. (b) Dance, I. Dalton Trans. 2008, 5977–5991.

² (a) Barney, B. M. et al Proc. Natl. Acad. Sci. 2006, 103, 17113–17118. (b) Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Acc. Chem. Res. 2009, 42, 609–619. ³ Rav. K \cdot Bill. E \cdot Monthand

Ray, K.; Bill, E.; Weyhermuller, T.; Wieghardt, K. J. Am. Chem. Soc. 2005, 127, 5641-5654.