Brightening of carbon nanotube photoluminescence through the incorporation of sp^3 defects

Piao, Y.; Meany, B.; Powell, L. R.; Valley, N.; Kwon, H.; Schatz, G. C.; Wang, Y.-H.

Nat. Chem. 2013, 5, 840-845.

1. Introduction

1.1. Photoluminescence in Semiconducting Single-Walled Carbon Nanotubes

Semiconducting single-walled carbon nanotubes (SWCNTs)

Characteristic near-infrared photoluminescence

<u>Problem:</u> Low photoluminescence quantum yield Φ (< 1%)

1.2. Energy States of Semiconducting SWCNTs

Previous reports revealed the existence of 'bright' and 'dark' excitons (*Figure 1*).¹

• Non-radiative 'dark' excitons reside <u>below</u> and <u>above</u> the optically allowed 'bright' excitons.

Relaxation of excitons to this low-lying dark state results in high population of dark excitons, and low photoluminescence Φ of SWCNTs.

Harnessing these inaccessible dark excitons is challenging.

1.3. This Work

SWCNT photoluminescence was brightened by covalent sidewall functionalization.

• Inducing *sp*³ defects in the carbon *sp*² lattice is known to quench the photoluminescence drastically.²

Figure 1. Energy states of semiconducting SWCNTs. The 'dark' excitons reside above and below the 'bright' excitons (E_{11}) . Because the dark excitons have lower energy than bright ones, large number of excitons will relax to dark state. This results in a weak intensity of photoluminescence, and low Φ . In this work, by adding sp^3 defects, the harnessing of these excitons was achieved.

- Careful control of the reaction conditions revealed that small window of reaction conditions can brighten the photoluminescence.
- Control of the photoluminescent properties by the substituents was also available.

2. Results and Discussion

2.1. Photoluminescence of Functionalized SWCNTs

(6,5)-SWCNTs were functionalized covalently with aryl diazonium salt p-(NO₂)C₆H₄N₂⁺ BF₄⁻.

Figure 2. Photoluminescence before and after functionalization of (6,5)-SWCNTs. After functionalization, new peak red-shifted by 162 nm was observed. This namely E_{11}^{-} emission was 8.4 times brighter than the original E_{11} emission.

Photoluminescence of the SWCNTs before and after the functionalization were measured (Figure 2).

• A red-shifted, brighter peak, namely E_{11}^{-} peak appeared.

The new photoluminescence feature is sensitive to reaction conditions or chirality of nanotubes.

(*Table 1*) The increase of Φ is significant in smaller diameter nanotubes, (6,4) or (6,5).

(Figure 3) While E_{11} emission

Table 1. E_{11}^{-} luminescence dependence on (n,m) chirality. In smaller diameter nanotubes, significant increase of Φ was observed.

	Pristine	Covalently functionalized		$E_{11}^{-} - E_{11}$	$\boldsymbol{\Phi}(E_{11})$
(n , m)	$E_{11} ({\rm nm})$	$E_{11} ({\rm nm})$	E_{11}^{-} (nm)	(meV)	$/ \Phi(E_{11})$
(7,6)	1113	113	1263	-132	0.5
(8,4)	1109	1109	1263	-136	1.0
(9.2)	1133	1134	1300	-140	
(7,5)	1015	1015	1179	-170	
(6,5)	972	975	1137	-181	8.4
(8,3)	942	942	1154	-241	
(6,4)	870	869	1058	-254	28.6

drops to noise level immediately, E_{11} peak grows as the reaction proceeds over a period of ~200 h.

• (*Figure 4*) E_{11}^{-} emission is observable only around 0.33 mol% diazonium salt is used, beyond which it is completely lost.

Figure 3. Emission intensity dependence on reaction time. E_{11}^{-} emission growed over a period of 200 h. Obtained at a diazonium salt to carbon molar of 1:300.

The surface density of functional groups was quantified by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS).

- In Raman spectra, disorder (D) peak at 1,300 cm⁻¹ growed as the ratio of salts increases (*Figure 5*). Noncovalent physical adsorptions of diazonium salts, dimers or polymerized byproducts do not give this peak.³
 - Covalent bonding of the aryl groups were confirmed.

Figure 4. Emission intensity dependence on relative concentration of diazonium salts. [Dz]/[C] = diazonium salt/carbon concentration ratio. The E_{11}^- emission is only observable in a narrow window of molar ratio.

Figure 5. Raman spectra of (6,5)-SWCNTs. As the molar ratio of diazonium salt increased, the disorder (D) peak growed, while the sp^2 stretching G band was proportional.

- From XPS data, $0.06 \pm 0.01\%$ of the C atoms were bonded with an aryl group. This corresponds to one functional group per 20 nm length of (6,5)-SWCNT.
 - Low concentration of functional groups gives little change in the optical properties from the pristine nanotube.
 - As the functional density increases, the sp³ defects also increases, results in quenching of the photoluminescence of both E_{11} and E_{11}^{-} .
- Careful control of the diazonium chemistry allowed the access to this new photoluminescence.

2.2. Origin of the Dark-Exciton Brightening

Electronic structure of an aryl-functionalized 4 nm long (6,5)-SWCNT was calculated.

- Compared to pristine SWCNT, the split of HOMO and LUMO was found (*Figure 6*).
- The split is regardless of where the pairing H is attached.

Figure 6. Energy level split of (6,5)-SWCNTs. The attached pairing H atom are highlighted.

As more aryl functional groups are attached covalently to the nanotube sidewall, the red-shifted absorption has increased (*Figure 7*).

- E_{11} has splitted to E_{11}^{-} (181 meV below E_{11}) and E_{11}^{+} (225 meV above E_{11}).
- E_{11}^{-} absorption occurs at exactly the E_{11}^{-} photoluminescence energy.

The red-shift of E_{11}^{-} from E_{11} shows a 1/(nanotube diameter)² dependence (*Figure 8*).

- Low-lying dark excitons are predicted to have similar diameter dependence.⁴
- For (6,5)-SWCNT, the energy difference between E_{11}^{-} and predicted dark exciton matches to the energy of the observed D phonon (1301 cm⁻¹ = 161 meV).
 - > Vibronic coupling between E_{11}^{-} and low-lying dark exciton can take place.
- In larger diameter nanotubes, E_{11}^{-} state is higher, thus couples to less-populated *K*-momentum dark excitons rather than low-lying 'dark' excitons.

Figure 7. Absorption and emission spectra of (6,5)-SWCNTs. The arrows highlights increase of E_{11}^+ and E_{11}^- absorption as the degree of functionalization increases.

Figure 8. Energy levels of each states. The red-shift of E_{11}^{-} from E_{11} shows a dependency on nanotube diameter. This results in a different coupling of E_{11}^{-} states.

From these energy relationships,

- Bright emissions in (6,4) and (6,5) nanotubes come from the relaxation of the low-lying dark excitons to the emissive E_{11}^{-} state, because of the increased sp^3 defects.
- Coupling to the low-lying dark excitons was possible because of the lower energy level of E_{11} state.
- Larger diameter nanotubes, such as (7,6) or (8,4), have higher energy level, so that the E_{11}^{-} state couples to less-populated *K*-momentum dark excitons. This results in negligible brightening of the nanotubes.

2.3. Control of the Optical Properties by the Aryl Functional Groups

Instead of NO₂ group, several electron withdrawing or donating groups were introduced (*Figure 9, 10*).

- E_{11}^{-} emission energy and Φ can be controlled by substituents.
- The photoluminescence peak can be correlated with the Hammett constant $\sigma_{\rm p}$.
 - This trend of frontier orbital energy level changes is consistent with those observed in conjugated polymers.

3. Conclusions

- It was found that covalent functionalization of semiconducting SWCNTs gives a brighter photoluminescence than the original SWCNT with a controlled number of aryl functional groups.
- The emission energy and the photoluminescence quantum yield are tunable by the substituents on the aryl functional group.
- These phenomena can be understood by enhanced exciton-phonon coupling induced by controlled number of *sp*³ defects.

4. References

- (1) Spataru, C.; Ismail-Beigi, S.; Capaz, R.; Louie, S. Phys. Rev. Lett. 2005, 95, 247402.
- (2) Karousis, N.; Tagmatarchis, N.; Tasis, D. Chem. Rev. 2010, 110, 5366–5397.
- (3) Usrey, M. L.; Lippmann, E. S.; Strano, M. S. J. Am. Chem. Soc. 2005, 127, 16129–16135.
- (4) Capaz, R.; Spataru, C.; Ismail-Beigi, S.; Louie, S. Phys. Rev. B 2006, 74, 121401.