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1. Introduction
1-1. C(sp’)—H amination: Nitrene insertion into C(sp”)-H bond to make C-N bond
* Nitrene: N analogue of the carbene, too reactive and too unstable (Figure 1)

- Because of the ability of H atom abstraction/radical = o
R-N: - dimerization to form azo-compound
/
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recombination to give C-N bond, nitrene has RN=X (RN=M) | — - aZiridine formation from olefin
. L X =N, IPh, Cl, Br - - H- abstraction from organic compounds
attracted much attention as a promising reagent for R=EWG  Tronod) - insertion into C-H bond
C-H amination. Figure 1. Generation and reactivity of nitrene species

=> Low efficiency and site-selectivity has been problem.

- Control of reactivity of nitrene has been achieved with the utilization of the transition metal catalysis (nitrenoid).
- Most general approach is rhodium catalysis (Initial report by Breslow (1982) => Du Bois C—H amination). Other

metals such as Cu, Mn, Pd, Ru, Ag, have been also investigated (Miiller, Che, Mansuy, Katsuki, Cenini, He,.. .).1

1-2. Iron as an alternative catalyst

- Iron ... abundant, nontoxic => ideal metal as a catalyst

- Ligand framework is the key for achieving of C—H amination. Inspired by natural compounds “heme” (Fe=O
supported by porphyrin-iron), many ligands have been developed to achieve C—H amination with iron-imide (Fe=N).
However these ligands are not effective for achieving catalytic turnover.”

- Recently, the first general C(Sps)*H amination  Scheme 1. Iron-catalyzed intramolecular allylic C—H amination and unique reactivity
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Possibility of orthogonal reactivity of iro (Rhvcat) >20 < 1 FePe

Problems: Limited to allylic C—H bonds that have relatively low BDE (~89 kcal/mol) => Limited scope

No mechanistic study on the reason why FePc is good => Further improvement of ligand design is difficult
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- Two groups independently developed new ligand frameworks, which H ~ZL v NHTS
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both enabled general iron-catalyzed C—H amination (Figure 2). R)\ P Vi S R)\
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- These iron complexes are well defined and characterized by X-ray or )\M/\/NEI active iron-imide HN
R " intermediate F{J\}n

ESI-MS, and putative intermediate was also proposed from results of
benzylic, 3°, 2°, 1° C—H amination

mechanistic studies, supported by DFT calculations. both inter- and intramolecular
alkylazide as the nitrene precursor

Figure 2. Ligand-controlled general C—H amination
1 by iron catalysis



2. Results and Discussion
2-A. Quinquepyridine-iron complex (1) (Che et al., Figure 3
- Seven-coordinated iron complex (6 + 1) shows nitrene-transfer reactivity. *°

- This work: Five-coordination by the ligand + Two labile coordination site (5 + 2)

Hypothesis: Iron-bis(imide/nitrene) complex shows high reactivity?

Figure 3. Quinquepyridine iron complex

Results (Scheme 2, Scheme 3) [Fe(apy)(MeCN),](CIO,), (1)

Scheme 2. Intramolecular C(sp3)—H amination with tosylamine catalyzed by 1

Scheme 3. Intermolecular C(sp3)—H amination catalyzed by 1
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- Direct amination of benzylic, 3°, and 2° C—H bonds has been achieved with catalytic amount of iron (5 mol%).

- Intermolecular C—H amination also proceeded.

- 4-coordinate, 3-coordinate ligands (Fe-monoimide) => no reaction
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a) KIE study, Hammet Plot \
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* In ESI-MS analysis, several iron imide/nitrene complexes (Cx) Figure 4. Plot of log kg vs o,* for amination of p-YCgH,Et

r t nding on the reaction conditions.
were detected depending on t i [Fo(apy)(NTS)oP*(Crrme)

- complex 1 : PhI=NTs = 1:4 (Figure 5) 100 b " 39098
Peaks of bisimide (Cnrs), monoimide (C), [Fe(qpy)]”" were \/rc/(’ -
observed. => Cnts may involve in this reaction g L X
= Cx
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- complex 1 : PhI=NTs = 1:1 (data not shown) = 306.05
Prominent  peak  which can  be  assigned to [Fe(apy)2*
[Fe(qpy)(NTs)(ClO4)]" (Ccios) Was observed. No peak of C or 22153 ‘ L L
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Figure 5. ESI-MS spectrum of the reaction of 1
with Phl=NTs (4 equiv) in MeCN.



- As shown in Table 1, excess amount of nitrene precursor is necessary to Table 1. Equimolar experiments

obtain aminated product (Compare entry 2 and 3 in Table 1)

. .. _ (excess) QNTS
=> Active species is Cnrs or C , not Ccios. T RN
Cy—NTs
; . Phi Yield of Cy-NT:
¢) DFT calculations Entry 1:Phl=NTs (eq'ﬁiv basa 0n51)
- Energy barriers of H-atom abstraction: 1 1:05 0
Cnrs: 15.3 kcal/mol  C: 14.2 kcal/mol  Ccios: 17.6 kcal/mol 2 1 1
. 3 1:2 100
=> Corresponds to the experimental result.
4 1:3 400

- Both Cnrs and C, calculated Fe=N distance is markedly long (1.819, 1.884 A
for Cnrs, 1.822 A for C), suggesting Fe=N bond is so weak that imide ligand may have radical nitrene character and

could be described as [ NTs] => high reactivity for C—H abstraction

- Bis(imide)-iron complex may play pivotal role. Further experiment is required, but they failed to isolate Cnrs or C.

2-B. Dipyrrinato-iron complex (Betley et al., Scheme 4

. . . . 5
Ligand design for C-H amination: Scheme 4. Dipyrrinato iron complex 2 and their previous achievement

1)  Strongly-donating  substituents: N

nucleophilic metal complex that support

Fe=N bond formation @N . ©/ 2 ©/\NHAd
3
60 °C

2) Steric bulk: minimal coordination of
(20 equiv) (excess) 6.7 TON

Fe=N bond which may result in high

Ar = Mes(2a) or 2,6-Cl,CgHj3 (2b) First intermolecular catalytic
reactivity of nitrene L J C-H amination with Fe

Notably, simple alkyl azide can be used as aminating reagent!

- Previously they achieved catalytic turnover of C—H amination, but reagents were excess and conversion is very low.

This work: Intramolecular reaction of alkyl azides to give N-heterocyclic compounds

Table 2. Intramolecular C—H amination catalyzed by 2
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Results (Table 2) or the synthesis of pyrrolidine derivatives
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- General synthesis of N-heterocycles via Fe-cat. C—H amination. EWG on the azide is not required.

- Notably, strong C—H bond such as, 2°, 1° C—H bond can be also aminated (entries 4 and 5).
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Property of complex 2

In previous Work,5 they isolated and fully Scheme 5. Synthesis and isolation of iron imide/nitrene intermediate (3)

characterized the iron imide complex (3) (Scheme 5).
- Distance of Fe=N: 1.768 A (longest so far)

o T, NN
- High spin ground state (S = 2, supported by -N, N %
Mossbauer measurements and DFT calculations) ZAd
2 3
=> Radical nitrene character [[NTs] which shows \© tBu\©\
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Figure 6. Proposed mechanism
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They proposed two pathways, path I and II (Figure 6).

- Intermediate 4 is quantitatively obtained in the absence of Boc,0.

- Intramolecular KIE (5.1) is similar to previous case, in which path I is proposed (Scheme 6, eq. (a)).

- Retention of the stereochemistry and radical clock experiment showed radical intermediate is less plausible (eq. (b)
and (¢)).

=> Finally they could not conclude which path is more plausible, although previous studies suggest path 1.

If path I is operative, radical recombination should be very fast (> 10''/s).

3. Conclusions

» Two general C—H amination methods have been developed, with different working hypotheses and ligand designs.

* C—H bond that have strong BDE, such as 2°, 1° C—H bonds can also be successfully aminated.

* Design of the ligand strongly affects distance of Fe=N bond, which leads to high reactivity of nitrene (supported by

experimental results, spectroscopic analysis and theoretical studies)
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