Journal Club

A two-dimensional polymer prepared by organic synthesis

Patrick Kissel, Rolf Erni, W. Bernd Schweizer, Marta D. Rossell, Benjamin T. King, Thomas Bauer, Stephan Götzinger, A. Dieter Schlüter, and Junji Sakamoto*

Nat. Chem. 2012, 4, 287–291.

1. Two-dimensional (2D) periodic surface: various preparation methods

1.1. Recent achievements to obtain periodic 2D single-layered surface (Figure 1)

(a) **Exfoliation of aggregated sheets**: 3D -> 2D (mica, molybdenite, graphene)

• Mechanical (exfoliation by scotch-tape) or solvent treatment (obtaining dispersion)

✓ Easy method, large scale production

X Limited structure of sheets, harsh synthetic condition

(b) Self-assembly of monomer and tuning the structure with additives: 0D -> 2D (Figure 2)^[1]

• Tuning of molecular orientation and size of oriented domains by changing an additive

✓ Easy fabrication and tuning of surface properties

X Limited substrate for fabrication

X Structural weakness (solved by cross-linking)

X Difficulty in finding the condition

of controlling molecular ordering

(c) Covalent linkage: 0D ->1D ->2D(Figure 3)^[2]

• Anisotropic polymerization by different terminal halogen atom

✓ Ability to tune the structure, surface energy, etc.

X Defects originating from <100% reactivity

• In general, polymer bearing two-dimensional **periodicity** has rarely been synthesized.

Figure 2. Formation of 2D surface on HOPG by hydrogen bonding

1.2. This work: polymerization of pre-organized crystal

- (d) Strategy: $0D \rightarrow 3D \rightarrow 2D$
- ✓ Polymerization using cyclization with complete site-selectivity to obtain periodic structure
- ✓ Preparation of polymer sheets without any supporting surface
- X Complicated synthetic method

2. Synthesis, crystallization of monomer, and photopolymerization

2.1. Overview of synthesis of monomer (Scheme 1)^[3]

• *C*₃-symmetrical monomer **6** bearing terphenylene bridge (TPB) and diethynylanthracene (DEA) unit by sequential Sonogashira coupling and final capping by esterification

Scheme 1. Synthesis of monomer **6**

2.2. Crystallization, photopolymerization, and single-layer exfoliation

• *C*₃-symmetrical layered structure

with separation of TPB and DEA

-> Prevention of interlayer polymerization by TPB "insulator"

• Plate or rod structure with hexagonal face (Figure 5)

• Exfoliation by heating in solvent (NMP)

-> Single layered sheets with 1-2

• AFM image (Figure 6)

um lateral size

• Plausible reason of exfoliation

(1) Conformational relaxation: destabilization of stacked state due to shrinkage of crystal size

(2) Shear force induced by thermal treatment and by internal strain

Figure 5. Optical microscopic images of the crystal before photopolymerization and after polymerization and exfoliation

2.3. Insights into chemical structure (Figure 7)

- Photopolymerization reaction using a model compound -> [4 + 4] cycloaddition
- Raman spectra of polymer (Figure 8): decrease in C=C bond signal by 50%, increase in C=C bond signal, disappearance of anthrene signals
- -> [4 + 2] cycloaddition of anthracene unit
- Difference in reaction type: structural strain in the

Figure 6. An AFM image of polymer sheets on mica, whose height well agreed with that of expected single layer

Figure 7. Plausible cyclization pathway

crystal which prohibiting [4 + 4] addition in the crystal

3. **Properties of two-dimensional polymer**

3.1. Internal periodicity

• TEM of eight layered sheets (single layer was unstable against electron beam, Figure 9)

-> Periodic structure with diffraction similar to that of monomer crystal

-> Retaining of structure after polymerization

3.2. Structural rigidity

• Chemical tolerance: highly stable against CHCl₃, TCE, etc. (Figure 10) for >4 months

• Mechanical stability: unlike graphene, no folding of polymer sheets on Cu grid

-> Polymerized structure with rigid chemical bonding (norbornene bridge)

• Mw > 10^8 Da for >1 μ m² sheet: one of the largest polymer (cf. cellulose and polyethylene: ~ 10^6 Da)

4. Conclusion and perspective

• Two-dimensional polymer bearing **internal periodicity** and **structural rigidity** was prepared by bottom-up synthesis.

• Utilization of this polymer sheets: functionalization of capped part by ester exchange for filtration of small molecules or bottom-up construction of 3D structure

5. References

 Stannard, A.; Russell, J. C.; Blunt, M. O.; Salesiotis, C.; Giménez-López, M. del C.; Taleb, N.; Schröder, M.; Champness, N. R.; Garrahan, J. P.; Beton, P. H. *Nat. Chem.* 2012, *4*, 112–117.

Figure 9. (a) TEM image of a stacked polymer sheet and (b) magnified image. (c) Diffraction pattern of the sheet taken at cryogenic condition and (d) of a monomer crystal

Figure **10.** Optical microscopic images of crystals and polymerized crystals in 1,1,2,2-tetrachloroethane (TCE)

- 2. Lafferentz, L.; Eberhardt, V.; Dri, C.; Africh, C.; Comelli, G.; Esch, F.; Hecht, S.; Grill, L. Nat. Chem. 2012, 4, 215–220.
- 3. (a) Kissel, P.; Schlüter, A. D.; Sakamoto, J. *Chem. Eur. J.* **2009**, *15*, 8955–5960. (b) Kissel, P.; Heijst, J.; Enning, R.; Stemmer, A.; Schlüter, D.; Sakamoto, J. Org. Lett. **2010**, *12*, 2778–2781.