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1.  Introduction: Molecular Encapsulation in Carbon Nanotubes (CNTs)  
• Applications: molecular carrier, sensor, nanoreactor, … (Figure 1) 
• Characterization methods: TEM, IR, Raman, NMR 
• Encapsulation can be easily confirmed by shift in IR or Raman 

spectra of the encapsulated molecule. However, the signal intensity 
is considerably decreased. 
• The polarization of π-electrons of CNTs can screen electric fields and act as a Faraday cage. This 

effect has been known for molecules adsorbed on metallic surfaces.1 

Screening Effect of IR Absorption of Molecules Adsorbed on the Surface of a Conductor 
 - IR absorption occurs when the vibration or rotation of 

the molecule causes a change in the dipole moment. 
- Dipoles parallel or perpendicular to the surface of a 
conductor produces virtual-image dipoles (Figure 2). 

- The image dipole change can cancel or strengthen the 
dipole change originating in the vibrating molecule (= 
screening effect). 

 
 This Work: theoretical studies of the screening effect of the 

different incorporation sites of SWCNTs and determination of the 

main incorporation site by comparison with experimental data 

 

2. Previous Work: Acetone Adsorption to Single-Walled Carbon Nanotubes (SWCNTs)2 
• Adsorption of acetone molecules to SWCNTs can be 
applied as a chemical sensor. 
• Adsorption was measured by temperature programmed 

desorption MS (TPD-MS) (Figure 3). 
 => Adsorption energy can be measured by the intensity of the mass signal of acetone after increase 
of the temperature of the sample (2 K s–1) . 

• Two peaks were obtained in the TPD-MS spectrum of acetone-SWCNTs complex (Figure 4a). 
These peaks could be assigned by comparison with reference samples (carbon black). 

Figure 1. Rh catalyst encapsulated in CNTs
and possible incorporation sites of SWCNTs.
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Figure 3. Schematic image of TPD-MS measurement.

Figure 2. Changes during the vibration of a dipole 
near to the surface of a conductor.
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1. Weakly adsorbed acetone (140 K, w): exohedral and multilayer sites 

2. Strongly adsorbed acetone (300 K, s): groove, intestitial and endohedral sites 
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Figure 4. (a) Encapsulation sites of a bundle of SWCNTs. (b) Desorption of
acetone from purified SWCNTs annealed at 900 K and exposed to 1 to 100
langmuirs* of acetone. * Langmuir = unit of exposure to a surface; 1 langmuir = 
10–6 Torr exposure during one second.
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3. This Work: Redution of IR Signal of Encapsulated Molecules in SWCNTs 
3.1. Experimental Studies: Relation between Desorption Energy and IR Absorption 
• TPD analysis (Figure 5a):  
 - intensity ratio of weakly adsorbed acetone (w) and strongly 
adsorbed acetone (s) = 1:9.  

• IR analysis (Figure 5b) 
 - 90% decrease of IR intensity after flash heating to 200 K 
 - 10% decrease would be the expected value (TPD-MS) 

 => strongly adsorbed molecules suffer much stronger screening  
• Generality: 
- same result was obtained lower quality CNTs (non-purified 

and multi-walled CNTs) 
- diethyl ether and heptane showed the same behavior 

=> all IR modes are screened to a similar degree 

=> orientation of the molecule does not play a crucial role for 
screening effect 
 

3.2. Theoretical Studies 
3.2.1. Considerations for Calculations 
• Self-consistent-charge density-functional tight-binding (SCC-DFTB-D) method was used. 

• Two types of semiconducting chiral SWCNTs were considered 
   1) model S: small diameter of 7.7 Å; chiral indice (6,5) 
   2) model L: large diameter of 14.0 Å, chiral indice (11,9) 

• Calculated values: 
- Δq (induced Mulliken charges): charge fluctuations upon formation of acetone-SWCNTs complex 
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Figure 5. (a) TPD-MS spectrum of acetone
desorption from purified SWCNTs after 100 
langmuir dose. (b) IR cross-section of the
ν(C=O) mode of acetone before and after
flash heating. s = strongly; w = weakly.
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 => intensity of screening effect 
- δq (dynamic charge fluctuations): variation of atomic partial charges during the C=O bond stretch 

 => change in the intensity of screening effect during C=O bond stretch 
• Dipole moment (µ) and IR spectrum (A) can be calculated from Δq and δq (Equations 1 and 2). 
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 (Equation 2) 

3.2.2. Calculation Studies (1): Endohedral and Exohedral Sites 
• Endohedrally adsorbed acetone: IR activity is strongly suppressed (Table 1a, Figure 6a1) 
• Exohedrally adsorbed acetone: IR intensity depends on acetone alignment to CNTs wall 

  - PP position (planar parallel): small suppression of IR intensity (Table 1b, Figure 6a2) 
  - UP position (perpendicular): increase of IR intensity (Table 1c, Figure 6a3) 

screening effect: endohedral >> exohedral 
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Table 1. Schematic images of charge flutuation after
complex formation. Maximum value for charge flutuation
after complex formation and variation of atomic charges
during C=O bond stretch. * Dipole values are given relative 
to gas phase acetone dipole moment set to unit.

Figure 6. (a) Theoretical IR spectra of endo_S, exo_S_PP, 
and exo_S_UP. (b) Theoretical IR intensities of acetone
ν(C=O) at 1796 cm–1 in different acetone-SWCNTs
complexes. IR intensities are given relative to gas phase
acetone ν(C=O) band scaled to unity.
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• Size of SWCNT affects the efficiency of shielding (Figures 6b and 7) 
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Figure 7. Effect of curvature of SWCNTs in the screening effect.  
3.2.3. Calculation Studies (2): Groove and Interstitial Sites 
• Δq and δq of groove and interstitial adsorptions are of the same order as in the case of single-tube 

exohedral complexes (Table 2). 

• Groove sites: IR signal reduction/enhancement depends on the orientation of the C=O bond 
 (similar to exohedral adsorption site) (Table 2a, b and Figure 8a1, 2). 



 4 

• Interstitial sites: competition between the IR signal enhancement and reduction due to 

simultaneous UP and PP orientations => reduction of IR signal (Table 2c, Figure 8a3). 
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Table 2. Schematic images of charge flutuation after complex formation. Maximum value for charge flutuation after complex
formation and variation of atomic charges during C=O bond stretch. * Dipole values are given relative to gas phase acetone dipole 
moment set to unit.
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Figure 8. (a) Theoretical IR spectra of groove_ss_PP, groove_ss_UP, and interstitial_sss. (b) Theoretical IR intensities of
acetone ν(C=O) at 1796 cm–1 in different acetone-SWCNTs complexes. IR intensities are given relative to gas phase acetone 
ν(C=O) band scaled to unity.
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4. Discussion 
• Experiment: 90% decrease in IR signal after heating to 200 K 
• Theory: reduction of the intensity of ν(C=O) vibration mode of acetone 

 (endohedral site = 90% decrease) vs. (exohedral, groove, interstitial sites = max. of 50% decrease) 
      => strongly adsorbed acetone molecules are located mainly in endohedral sites (Scheme 1) 
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Scheme 1. Adsorption of acetone in SWCNTs and desorption after heating to 200 K.
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• This result is consistent with the uniform screening of all vibrational modes of acetone. 
5. Conclusion 
• Intensity of screening effect was determined to different adsorption sites of SWCNTs. 

endohedral >> exohedral (PP), groove (PP), interstitial >> exohedral (UP), groove (UP) 
• Intensity of screening effect was used to determine the main incorporation site of encapsulated 

molecules. 
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