Total Synthesis of Englerin A

Satoshi Okada

K. C. Nicolaou^{*}, Qiang Kang, Sin Yee Ng, and David Y. –K. Chen *J. Am. Chem. Soc.* **2010**, *132*, 8219–8222, Received in April 12, 2010

1. Introduction

- Englerin A ((–)-1) and its derivatives englerin B ((–)-2) and englerin B acetate ((–)-3) were discovered from the stem bark of *Phyllanthus engleri* in Tanzania (Figure 1).
- Englerin A has potent and selective growth inhibitory activities againse renal cancer cells.¹
- The cytotoxicity decreased from (–)-1 to (–)-2 or (–)-3.
 - -> C₉ ester side chain is crucial for bioactivities.

• There are already two reports on total synthesis of Englerin A.² In both cases, they synthesized chiral linear-chain compounds at very early stage of their total synthesis. Both used gold catalyzed cycloaddition of chiral compounds to form oxatricyclo framework.

1.2. Previous Work (Scheme 1)^{2a}

Scheme **1**. Synthesis of (–)-englerin A (**1**) and B $(2)^3$

2011.01.13.

[(-)-1] (-)-englerin A ; R = COCH₂OH [(-)-2] (-)-englerin B ; R = H [(-)-3] (-)-englerin B acetate; R = Ac

Figure 1. Structures of Englerin A and its derivatives

Scheme 2. Mechanism of gold-catalyzed [2+2+2] alkyne/alkene/carbonyl cycloaddition from 7 to 8

• Introduction of chirality in the early step $(4 \rightarrow 5)$. Five chirality-introducing steps and one chirality-eliminating step.

• (–)-Englerin A ((–)-1) was synthesized in 18 steps in 13% yield.

• Oxatricyclo enone 8 was synthesized by gold(I)-catalyzed [2+2+2] alkyne/alkene/carbonyl cycloaddition in moderate yield. (7 -> 8)

• Although chiral epoxide was introduced in **10**, three chiral centers including chiral epoxide were eliminated. (**10** -> **11**). After that two chiral centers were introduced. (**11** -> **12**)

1.3. This Work:

• Introduction of chirality in the latter part of synthesis, without any elimination of chirality

• Usage of achiral compounds to form chiral oxabicyclo framework and introduction of three chiral centers in one step (Figure 2)

• Cytotoxicity measurement to study which functional groups are critical to bioactivities

Figure 2. Retrosynthetic analysis of **1**.

2. Results and Discussion

2.1. Total Synthesis of Englerin A (1)

2.1.1. Synthesis of the key intermediate 13 (Scheme 3)

Scheme 3. Synthesis of oxabicyclo enone **13**.

• Oxabicyclo enone (±)-13 was synthesized from propargylic alcohol 17 in 9 steps (overall yield of 13 was 16.0%, Scheme 2).

• Reaction conditions from 22 to 13 was optimized; using low concentration of 22 in toluene and adding 22 slowly to a refluxing solution of ^{*i*}Pr₂NEt (substoichiometric amount, 0.9 eq), MsCl and ethyl acrylate worked the best (Table 1, entry 6).

- Addition of metal salts as Lewis acids led to unidentifiable mixture of byproducts (entry 4).
- Only toluene and acetonitrile as a solvent worked to produce desired compound **13** (entry 3).
- Isomers **13** and **13'** were easily separated by silica gel flash column chromatography, but (+)-**13** and (–)-**13** were inseparable even by chiral column chromatography.

 Table 1. Optimization of reaction conditions from 22 to 13. Reverse addition: addition of 22 into a mixture of MsCl, etc.

2.1.2. Synthesis of Englerin A (1, Scheme 4)

Scheme 4. Synthesis of Englerin A (±)-1 and its derivatives (±)-2 and (±)-3.

• Englerin A (±)-1 and its derivatives (±)-2 and (±)-3 were synthesized in 12 ,10, and 9 steps respectively from 23 (overall yield of (±)-1 was 12.4% (from 23) and 2.0% (from 15)).

• Total number of chirality-introducing steps were three.

• Chirality introduction: hydroxyl group at C_6 position in 27 was introduced by Luche reduction.

• C_6 hydroxyl group was crucial for stereoselectivity in the Crabtree hydrogenation (27 -> 28). In a condition using Pd/C and H₂, hydrogenation underwent from the opposite face of the C₄-C₅ bond.

• Desired glycolic acid residue was introduced smoothly by Yamaguchi conditions in 86% yield

 $((\pm)-2 \rightarrow (\pm)-1)$. This process is similar to previous work.^{2a}

• NMR data of englerin A derivatives (±)–1, 2, 3 matched those reported for the naturally derived materials, except for optical rotations.

2.2. Asymmetric Synthesis of Englerin A Precursor 13 (Scheme 4)

Scheme 5. Asymmetric synthesis of (-)-13

• Key compound (–)-13 was asymmetrically synthesized in 4 steps (overall yield 13.2% from 24, conversion from 24 to 35 and 36 was not optimized).

• A chiral sulfonamide acrylate derivative (CH_2CHCO_2A), which is available in 3 or 4 steps from commercially available compounds⁴, assisted the asymmetrical [5+2] cycloaddition reaction.

• Exo diastereoisomers 33 and 34 were separated by chiral HPLC.

• Accessibility to (-)-13 enabled us to synthesize (-)-1, (-)-2, (-)-3 (not accomplished).

2.3. Cytotoxicity (Table 2)

• Only **1** and **37** showed activities in renal cells ACHN and UO31 (Table 2) ->Substituents at C_6 position are not so important than that at C_9 position.

Table 2. Cytotoxity study of Englerin derivatives

3. Conclusion

• Englerin A (1) and its derivatives and a precursor of (–)-1were synthesized.

• Cytotoxicity study revealed that substituent at C₉ position was important, and at C₆ position was less important.

References

¹ Ratnayake, R.; Covell, D.; Ransom, T. T.; Gustafson, K. R.; Beutler, J. A. Org. Lett. 2009, 11, 57–60.

² a) Molawi, K.; Delpont, N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2010, 43, 3513–3516. b)Zhou, Q.; Chen, X.; Ma, D. Angew. Chem. Int. Ed. 2010, 43, 3517–3519. Both papers were received in February 12, 2010.
 (b)

³ AD-mix a includes K₂CO₃, K₂[Fe(CN)₆], and catalytic amount of K₂OsO₂(OH)₄ and chiral ligand (DHQ)₂PHAL.

⁴ a) Wolfgang, O.; Christian, C.; Gerald, B. Tetrahedron Lett. 1984, 25, 5885–5888 (3 steps). b)Duggan, A. R.; Kaye, P. T.; Caira, M. R. J. Chem. Res., Synopses 2006, 11, 744–747 (4 steps).