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1. Introduction
* Englerin A ((-)-1) and its derivatives englerin B ((-)-2) and

englerin B acetate ((-)-3) were discovered from the stem

1] (-)-englerin A ; R = COCH,OH (+)—enantiomer
2] (-)-englerinB; R=H
3] (-)-englerin B acetate R=Ac

(-
()
()

bark of Phyllanthus engleri in Tanzania (Figure 1). E
* Englerin A has potent and selective growth inhibitory  Figure 1. Structures of Englerin A
activities againse renal cancer cells.’ and its derivatives
e The cytotoxicity decreased from (-)-1 to (-)-2 or (-)-3.
-> C, ester side chain is crucial for bioactivities.
e There are already two reports on total synthesis of Englerin A.> In both cases, they
synthesized chiral linear-chain compounds at very early stage of their total synthesis. Both used

gold catalyzed cycloaddition of chiral compounds to form oxatricyclo framework.

1.2. Previous Work (Scheme 1)*
Scheme 1. Synthesis of (-)-englerin A (1) and B (2)*
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Scheme 2. Mechanism of gold-catalyzed [2+2+2] alkyne /alkene/ carbonyl cycloaddition from 7 to 8
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e Introduction of chirality in the early step (4 -> 5). Five chirality-introducing steps and one
chirality-eliminating step.

e (-)-Englerin A ((-)-1) was synthesized in 18 steps in 13% yield.

e Oxatricyclo enone 8 was synthesized by gold(I)-catalyzed [2+2+2] alkyne/alkene/carbonyl
cycloaddition in moderate yield. (7 -> 8)

e Although chiral epoxide was introduced in 10, three chiral centers including chiral epoxide

were eliminated. (10 -> 11). After that two chiral centers were introduced. (11 -> 12)

1.3. This Work:

e Introduction of chirality in the latter part of synthesis, without any elimination of chirality

e Usage of achiral compounds to form chiral oxabicyclo framework and introduction of three
chiral centers in one step (Figure 2)

e Cytotoxicity measurement to study which functional groups are critical to bioactivities
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Figure 2. Retrosynthetic analysis of 1.
2. Results and Discussion
2.1. Total Synthesis of Englerin A (1)
2.1.1. Synthesis of the key intermediate 13 (Scheme 3)
Scheme 3. Synthesis of oxabicyclo enone 13.
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* Oxabicyclo enone (+)-13 was synthesized from propargylic alcohol 17 in 9 steps (overall yield
of 13 was 16.0%, Scheme 2).

* Reaction conditions from 22 to 13 was optimized; using low concentration of 22 in toluene
and adding 22 slowly to a refluxing solution of 'Pr,NEt (substoichiometric amount, 0.9 eq),
MsCl and ethyl acrylate worked the best (Table 1, entry 6).
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e Addition of metal salts as Lewis acids led to unidentifiable mixture of byproducts (entry 4).
e Only toluene and acetonitrile as a solvent worked to produce desired compound 13 (entry 3).
e Isomers 13 and 13’ were easily separated by silica gel flash column chromatography, but

(+)-13 and (-)-13 were inseparable even by chiral column chromatography.

Table 1. Optimization of reaction conditions from 22 to 13. Reverse addition: addition of 22 into a mixture of MsCl,
etc.

entry x solvent additive  yield (%) selectivity note
i toluene .
MSCI (1.2 eq) : 1 1.2 (0.15 M) none 47 5:1
oB o 1 'ProNEt (x eq) :
n | '
! CHy=CHCO,Et (10.0eq) ' OBn o] CH4CN )
‘ | additive | 2 12 (0.15 M) none 50 15:1
0 1 solvent, 23 °C ->reflux, 3 h 1 3 12 toluene with metal salts as unidentified
OH : i CO,Et " additive, THF, CICH,CH,CI, mixture
' 1
77777777777777777777777777777 toluene LiCl .
22 13 4 1.2 0.15 M) (1.0eq) 25 33:1
toluene . reverse
5 12 (043 M) none 49 5:1 tion
toluene . reverse
6 0.9 (0.04 M) none 46 8:1 addition

2.1.2. Synthesis of Englerin A (1, Scheme 4)
Scheme 4. Synthesis of Englerin A (+)-1 and its derivatives (+)-2 and (+)-3.
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e Englerin A (+)-1 and its derivatives (+)-2 and (+)-3 were synthesized in 12,10, and 9 steps
respectively from 23 (overall yield of (+)-1 was 12.4% (from 23) and 2.0% (from 15)).

e Total number of chirality-introducing steps were three.

e Chirality introduction: hydroxyl group at C, position in 27 was introduced by Luche
reduction.

e C, hydroxyl group was crucial for stereoselectivity in the Crabtree hydrogenation (27 -> 28).
In a condition using Pd/C and H,, hydrogenation underwent from the opposite face of the
C,~C; bond.

e Desired glycolic acid residue was introduced smoothly by Yamaguchi conditions in 86% yield
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((#)-2 -> (+)-1). This process is similar to previous work.*
e NMR data of englerin A derivatives (+)-1, 2, 3 matched those reported for the naturally
derived materials, except for optical rotations.

2.2. Asymmetric Synthesis of Englerin A Precursor 13 (Scheme 4)

Scheme 5. Asymmetrlc synthes1s of (-)-13
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e Key compound (-)-13 was asymmetrically synthesized in 4 steps (overall yield 13.2% from 24,
conversion from 24 to 35 and 36 was not optimized).

e A chiral sulfonamide acrylate derivative (CH,CHCO,A), which is available in 3 or 4 steps
from commercially available compounds®, assisted the asymmetrical [5+2] cycloaddition
reaction.

e Exo diastereoisomers 33 and 34 were separated by chiral HPLC.

e Accessibility to (-)-13 enabled us to synthesize (-)-1, (-)-2, (-)-3 (not accomplished).

2.3. Cytotoxicity (Table 2) Table 2. Cytotoxity study of Englerin derivatives

e Only 1 and 37 showed activities in renal cells Gl (orowth mibiion of S0%) ik
ACHN and UQO31 (Table 2) ->Substituents at C

position are not so important than that at C; position.  yos | w01 097 o0 92752 L1 10

|(-)-11 =1 (22 (@3 31 32

ACHN | <001 0413% 510 >0 >10 >10

37

3. Conclusion
e Englerin A (1) and its derivatives and a precursor of (-)-1were synthesized.
e Cytotoxicity study revealed that substituent at C, position was important, and at C, position

was less important.
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(b)

s 5 Steps AuCI (10 mol%) 9 steps )
OHC ~ — (-)-Englerin A
CH2CI2 rt, 20 min — 1
H

OH )
* AD-mix a includes K,CO;, K,[Fe(CN)], and catalytic amount of K,0sO,(OH), and chiral ligand (DHQ),PHAL.
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