Tunable Chiral Reaction Media Based on Two-Component Liquid Cristals: Regio-, Diastereo-,

and Enantiocontrolled Photodimerization of Anthracenecarboxylic Acids

Ishida, Y.*; Achalkumar, A. S.; Kato, S.; Kai, Y.; Misawa, A.;
Hayashi, Y.; Yamada, K.; Matsuoka, Y.; Shiro, M.; Saigo, K. *J. Am. Chem. Soc.* 2010 ASAP DOI:10.1021/ja105221u

1. Introduction: Chemical Reactions in Ordered Media

• Ordered media can produce chiral environments.

=> asymmetric synthesis (e.g. photoreaction, which is unexplored in homogeneous media)¹

Figure 1. Conventional ordered medias and relationship between selectivity and reactivity in asymmetric synthesis.

• Liquid Crystals (LC): ordering close to crystals + molecular mobility

highly selective asymmetric synthesis with good conversion however, no successful report due to poor molecular design and lack of

mechanistic understanding

2. Previous Work: Enantioselective Photodimerization of Anthracene Derivative in Two-Component Liquid Cristal²

- First asymmetric synthesis induced by a chiral liquid crystal
- Enantioselective photodimerization of anthracene **2a** was achieved in **1b•2a** liquid crystal.

This work: investigation of the effect of the stereochemistry of liquid crystal matrix in the asymmetric photodimerization of anthracenecarboxilic acids 2

=> model for tunable chiral reaction media for carboxylic acids

3. Tunable Chiral Reaction Media Based on Two-Component Liquid Cristal

3.1. Synthesis and Preparation of Liquid Crystal Salt

• Matrices **1a** and **1b** were synthesized from alanine derivative (*S*)-**5**.

=> applicable to other amino acids = library of asymmetric matrices

Scheme 2. Stereocontrolled synthesis of the amphiphilic amino alcohol 1a and 1b.

• 1c has only one chiral center => different strategy for the synthesis

Scheme 3. Stereocontrolled synthesis of the amphiphilic amino alcohol 1c.

• Salts were prepared from equimolar amounts of the amino alcohol and the carboxylic acid.

= IR (C=O absorbance): shift from 1680–1695 cm⁻¹ to 1620–1650 cm⁻¹

Scheme 4. Preparation of amphiphilic salt from amphiphilic amino alcohol 1a and carboxylic acid 2a.

3.2. Effect of Matrix Stereochemistry in the Structure of Amphiphilic Amino Alcohol Salts

• Characterization of thermotropic behavior of the salts => DSC, POM, XRD

Figure 2. (a) Phases of a thermotropic liquid crystal. (b) Thermotropic behavior from differential scanning calorimetry (DSC), (c) polaryzed optical microscopy (POM) images, and (d) X-ray difraction (XRD) patterns of the salts of amphiphilic amino alcohols with photoreactive carboxylic acids. (Cry: crystal, Iso: isotropic, Meso: unidentified mesophase, Sm_a: smectic A phase, Sm_x: smectic phase other than A).

amino alcohol and photoreactive carboxylic acid in

a self-assembled bilayer.

- Different phase diagram for the salts prepared from 1a-1c

 unexpected result, since difference in the structure of the matrices represents less than 2% of total molecular weight => different reactivities can be expected.
- Amphiphilic LC unit => bilayer structure

- layer thickness $d: d_{\text{observed}} (\text{XRD}) < d_{\text{calculated}}$

=> interdigitation of alkyl chains

3.3. Photodimerization of Anthracenecarboxylic Acids (2a and 2b)

- Photodimerization of anthracene derivatives (discovered in 1867)
 - = a benchmark for supramolecular systems in controlled reactions
- Dimerization of 2-anthracenecarboxylic acid (**2a**) in **1** gave 4 dimers. = syn^{HH}, anti^{HH}, syn^{HT}, anti^{HT} (HH = head-to-head, HT = head-to-tail)

Figure 4. Formation of HH and HT dimers.

Table 1. Photodimerization of 2-Anthracenecarboxylic Acid (2a) B = CO_aMe											
2 x HO		$\frac{hv}{cor}$	aditions	Me ₃ SiCHN ₂ luene/MeOH	R R aumHH 20						
	2a						anu -Ja				
entry	medium	phase	temp. (°C)	time (h)	yield (%) ^a	syn ^{HH}	anti ^{HH}	syn ^{HT}	anti ^{HT}	ee(%) ^b anti ^{HH}	
1	1a	Cry	40	15	10	57	41	1	1	-15	
2			80	15	23	52	44	2	2	-16	
3		lso	160	1	89	50	36	4	10	-14	
4	1b	Meso	35	3	23	26	72	1	1	+78	
5			35	15	58	27	71	1	1	+74	
6			45	1	24	27	71	1	1	+86	
7			45	3	48	28	70	1	1	+81	
8			45	15	68	34	64	1	1	+67	
9		Sma	80	1	72	46	52	1	1	+45	
10		u	80	3	66	48	49	2	1	+26	
11		lso	110	1	83	52	45	2	1	+18	
12	1c	Sm _x	40	3	42	56	42	1	1	+31	
13			40	15	85	56	43	1	1	+32	
14			105	1	64	61	37	1	1	+14	
15			105	3	81	61	37	1	1	+16	
16		lso	160	1	91	56	41	2	1	+13	
b	H ₂ O	Sol	25	1	88	7	14	36	43	n.d.	
С	CH ₂ Cl ₂	Sol	25	2	96	21	7	22	32	n.d.	

^a Determined by ¹H NMR. ^b Determined by HPLC. HH = head-to-head. HT = head-to-tail.

1. *Reactivity*: Iso > LC > Cry

- Moderate reaction yields in LC were obtained after increase of the temperature/time.

- 2. *Regioselectivity*: HH > HT => intralayer dimerization
- 3. *Diastereoselectivity*: syn^{HH}/anti^{HH} ratio was controlled by the amino alcohol stereochemistry - anti^{HH} selectivity (26:72) in **1b** and syn^{HH} selectivity (61:37) in **1c**
- 4. *Enantioselectivity* (anti^{HH}): very high in LC phases (up to 86%) but low in Iso phases => originated from the framework of the chiral supramolecular structure
- Photodimerization of **2b**: moderate yields and high HH selectivity (Table 2)

Table 2. Photodimerization of 1-Anthracenecarboxylic Acid (2b)

H	00				R	R		R	R	
2 x		hv (:	>360 nm) M	e ₃ SiCHN ₂) (X				
) co	nditions tolu	iene/MeOH		> >				\searrow
	2b				syn ^{HH} -3b	anti	i ^{HH} -3b	R syn ^{HT} - 3b	anti ^{HT} -3	b R = CO ₂ Me
						product ratio (%) ^b				
entry	medium	phase	temp. (°C)	time (h)	yield (%) ^a	syn ^{HH}	anti ^{HH}	syn ^{HT}	anti ^{HT}	ee(%) ^b anti ^{HH}
1	1a	Cry	25 100	15 3	55 72	75 69	22 24	2	2	-13 10
3	1b	Cry	25 90	15 3	39 57	47 50	40 30	10 11	3	-6 -8
5 6	1c	Sm _a Sm _a	65 65	3 15	36 43	67 66	33 34	<1 <1	<1 <1	-9 -5
7		Iso	120	3	77	57	34	5	5	n.d.

^a Determined by ¹H NMR. ^b Determined by HPLC. HH = head-to-head. HT = head-to-tail.

Diastereoselectivity: syn^{HH} > anti^{HH} / Enantioselectivity (anti^{HH}): low
 => in anti^{HH}-3b, the carboxylic acid groups are too far to form in the 1D hydrogen-bond network in LC

3.4. Characteristic Properties of Amphiphilic Amino Alcohols

Figure 6. (a) Newman projection of the conformation of the amino alcohols. (b) Definition of the dihedral angle θ . ^aRange determined by structure of 20 analogous amino alcohols obtained from Cambridge Structure Database (optimized value, HF/6-31G).

3.5. Mechanism (Figure 7)

- Photodimerization of anthracenecarboxylic acid
 - (a) reduction of distance in z-axis
 - (b) expansion in x-axis to avoid congestion of the

alkyl chains (observed by XRD)

• Flexible structure and strong matrix-substrate interaction suppressed the collapse of the ordered structure of LC.

=> high stereoselectivity with high conversion

• Dihedral Angle θ = angle between amino/hydroxy and aromatic planes

- defines the environment formed by LC
- different θ = different reactivity
- 1b has the narrowest θ range

=> rigid structure, high enantioselectivity

Figure 7. Schematic representation of the plausible structural changes of 1c·2a through the photodimerization of 2a.

4. Conclusion

Small changes in the liquid crystal matrix structure resulted in changes in the supramolecular structure, turning possible the tuning of stereoselectivity in the reaction product.

References

^{1.} Tanaka, T.; Toda, F. Chem. Rev. 2000, 100, 1025-1074.

^{2.} Ishida, Y.; Kai, Y.; Kato, S.; Misawa, A.; Amano, S.; Matsuoka, Y.; Saigo, K. Angew. Chem. Int. Ed. 2008, 47, 8241-8245.