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1. Introduction 
– The partial hydrogenation of alkynes to cis-alkenes is a very important transformation. 
– Heterogeneous catalyst (Lindlar catalyst) has been used for the reaction. 
=> Problem: cis/trans-isomerization and over-reduction 
– Some homogeneous catalyst that chemo- and stereoselectively hydrogenate alkyne were 
reported.1 However, the reaction mechanism has not been well studied. 
 
1.1. The Authors’ Previous Work2 
– The authors found that complex 
[Pd(Ar-bian)(MA)] 1 is able to 
homogeneously hydrogentate 
alkynes to form the Z-alkenes, and 
studied the reaction mechanism. 
– The catalyst still has problems; low 
reproducibility, instability of the 
catalyst, considerable over-reduction 
for arylalkynes. 
 
1.2. This work3 
– The authors found another complex 
suitable for the reaction; Pd(NHC) 
catalyst 2 (Scheme 2). 
– In the case of 2, over-reduction was 
fully inhibited when TEAF (triethyl- 
ammonium formate) was adopted. 
 
– Aim of this work 
(1) To reveal the mechanism of the 
Pd(NHC)-catalyzed hydrogen transfer 
using formic acid 
(2) To understand the reason for inhibition of over-reduction 
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Scheme 1. Semihydrogenation of alkyne with homogeneous Pd catalyst.
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Scheme 2. Semihydrogenation of alkyne with Pd (NHC)-catalyst using formic
acid as a hydrogen donor.
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2. Results and Discussion 
2.1. Kinetic Studies  
2.1.1. Determination of Rate Equation by Initial Rate Method (Scheme 4) 
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Scheme 4. Determination of Rate Equation by Initial Rate Method.
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– Substrate and formate coordinate to Pd before rate-determining step (eq. 1).  
– Catalyst and alkyne satisfy Michaelis-Menten relationship when alkyne concentration is low  
(< 0.15 M); There is an equilibrium between alkyne and catalyst (scheme 5). 
 

Scheme 5. Michaelis-Menten Relationship between Alkyne and Catalyst.
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. 
– When alkyne concentration is high (> 0.15 M, triangle), the reaction is possibly inhibited by 
formation of inactive complex (cf. scheme 1, palladacyclopentadiene E). 
 
2.1.2. The key factor for over-reduction 
– The effects of solvent and substrate are the key factor of over-reduction. 
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Figure 1. Effect of Strongly-Coordinating Effect and Substrate on Over-Reduction. . 
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2.1.3. Simplified Reaction Mechanism 
– A simplified mechanism is proposed based on the observations discussed above. 
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2.2. Isotopic Labeling of the Hydrogen Donor 
– The role of the two hydrogens of formic acid was investigated by D-labeling of formic acid. 
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2.3. NMR Studies 
2.3.1. 1H NMR study of the reaction catalyzed by isolated catalyst 3. 
– The reaction was monitod by 1H NMR to gain more insight into the species present, using 
catalyst 3, which had been isolated from solution of 1 in MeCN. 
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– As the reaction proceeds, positive charge is distributed over more than one amine. 
– Formate anion coordinates to Pd species. 
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2.3.2. 2H NMR study of labeled catalyst 3-d2. 
– Aim of this study; to know the state of MA(maleic anhydride) in the reaction 
– 3-d2 (catalyst with labeled MA) is used in the reaction (DMSO-d6, 25 °C) to observe spectrum. 
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– Part of MA is clearly coordinated to Pd catalyst (cf. previous case, scheme 1) 
 
2.4. Proposed Catalytic Cycle. 
– On the basis of the results described 
above, the catalytic cycle is proposed 
(scheme 6.) 

 
(1) A Pd(formate) is involved. (2.3.1.). 
(2) Two rate-determining steps with 
similar activation energy (2.2.) 
(3) Substrate and formate are 
coordinated to Pd before the 
rate-determining steps (2.1.). 
(4) Coordination of solvent and alkene 
affects alkene-selectivity (2.1.). 
 
3. Conclusion 
– The mechanism of Pd0(IMes)-catalyzed transfer hydrogenation of alkynes has been elucidated . 
– Over-reduction of alkyne is inhibited by strong competition between substrate and solvent for a 
Pd(alkene) intermediate occurring in the reaction.  
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