Mechanism of Pd(NHC)-Catalyzed Transfer Hydrogenation of Alkynes

Peter Hauwert, Romilda Boerleider, Stefan Warsink, Jan J. Weigand, and

Cornelis J. Elsevier

J. Am. Chem. Soc. 2010, 132 (47), pp 16900–16910.

1. Introduction

- The partial hydrogenation of alkynes to *cis*-alkenes is a very important transformation.

- Heterogeneous catalyst (Lindlar catalyst) has been used for the reaction.

=> Problem: *cis / trans*-isomerization and over-reduction

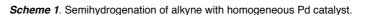
– Some homogeneous catalyst that chemo- and stereoselectively hydrogenate alkyne were reported.¹ However, the reaction mechanism has not been well studied.

1.1. The Authors' Previous Work²

The authors found that complex [Pd(Ar-bian)(MA)] 1 is able to homogeneously hydrogentate alkynes to form the Z-alkenes, and studied the reaction mechanism.

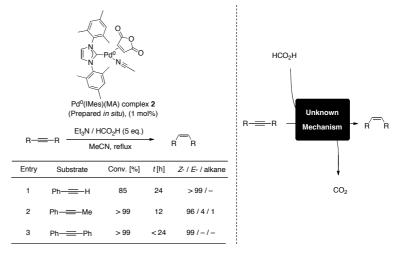
 The catalyst still has problems; low reproducibility, instability of the catalyst, considerable over-reduction for arylalkynes.

1.2. This work³


The authors found another complex suitable for the reaction; <u>Pd(NHC)</u> <u>catalyst 2 (Scheme 2).</u>

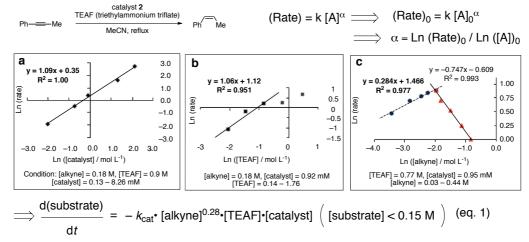

– In the case of **2**, over-reduction was fully inhibited when TEAF (triethyl-ammonium formate) was adopted.

- Aim of this work


(1) To reveal the mechanism of the Pd(NHC)-catalyzed hydrogen transfer using formic acid

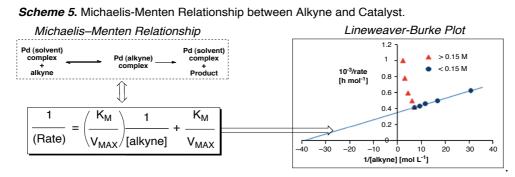
(2) To understand the reason for inhibition of over-reduction

Scheme 2. Semihydrogenation of alkyne with Pd (NHC)-catalyst using formic acid as a hydrogen donor.



2. Results and Discussion

2.1. Kinetic Studies


2.1.1. Determination of Rate Equation by Initial Rate Method (Scheme 4)

Scheme 4. Determination of Rate Equation by Initial Rate Method.

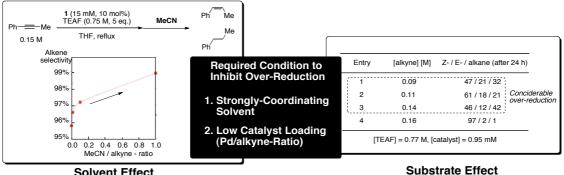
- Substrate and formate coordinate to Pd before rate-determining step (eq. 1).

- Catalyst and alkyne satisfy Michaelis-Menten relationship when alkyne concentration is low (< 0.15 M); There is an equilibrium between alkyne and catalyst (scheme 5).

- When alkyne concentration is high (> 0.15 M, triangle), the reaction is possibly inhibited by formation of inactive complex (cf. scheme 1, palladacyclopentadiene E).

2.1.2. The key factor for over-reduction

- The effects of solvent and substrate are the key factor of over-reduction.



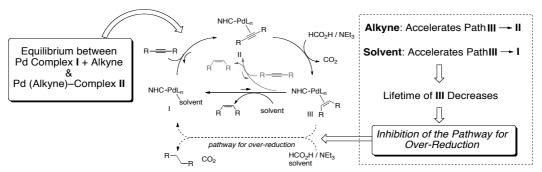


Figure 1. Effect of Strongly-Coordinating Effect and Substrate on Over-Reduction.

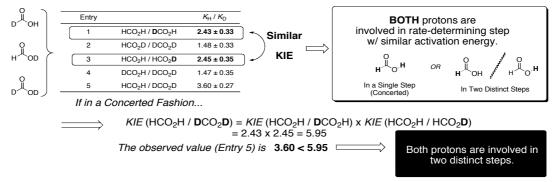
2.1.3. Simplified Reaction Mechanism

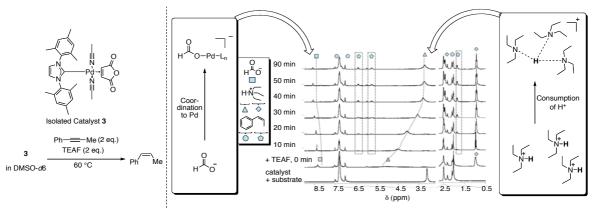
– A simplified mechanism is proposed based on the observations discussed above.

Scheme 5. Simplified reaction mechanism focusing on competiton between alkyne, solvent, and Pd (alkene)-complex.

2.2. Isotopic Labeling of the Hydrogen Donor

- The role of the two hydrogens of formic acid was investigated by D-labeling of formic acid.




Figure 2. Kinetic Isotopic Effect of Two Protons of Formic Acid.

2.3. NMR Studies

2.3.1. ¹H NMR study of the reaction catalyzed by isolated catalyst 3.

– The reaction was monitod by ¹H NMR to gain more insight into the species present, using catalyst **3**, which had been isolated from solution of **1** in MeCN.

Scheme 6. ¹H NMR Study of the reaction with isolated catalyst 3 in DMSO-d6.

- As the reaction proceeds, positive charge is distributed over more than one amine.

- Formate anion coordinates to Pd species.

2.3.2. ²H NMR study of labeled catalyst 3-d2.

- Aim of this study; to know the state of MA(maleic anhydride) in the reaction
- 3-d2 (catalyst with labeled MA) is used in the reaction (DMSO-d6, 25 °C) to observe spectrum.

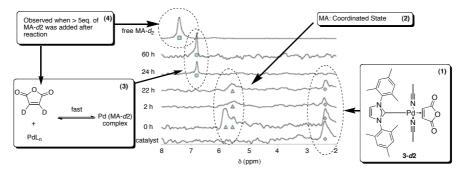
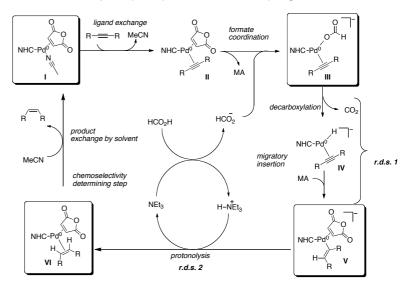


Figure 3. ²H NMR Study of Labeled Catalyst 3-d2.

- Part of MA is clearly coordinated to Pd catalyst (cf. previous case, scheme 1)

2.4. Proposed Catalytic Cycle.

On the basis of the results described above, the catalytic cycle is proposed (scheme 6.)


(1) A Pd(formate) is involved. (2.3.1.).

(2) Two rate-determining steps with similar activation energy (2.2.)

(3) Substrate and formate are coordinated to Pd before the rate-determining steps (2.1.).

(4) Coordination of solvent and alkene affects alkene-selectivity (2.1.).

Scheme 6. Proposed Catalytic Cycle for Transfer Hydrogenation of Alkynes to Z-Alkenes, Catalyzed by Complex **2** with TEAF as Hydrogen Donor.

3. Conclusion

- The mechanism of Pd⁰(IMes)-catalyzed transfer hydrogenation of alkynes has been elucidated .

– Over-reduction of alkyne is inhibited by strong competition between substrate and solvent for a Pd(alkene) intermediate occurring in the reaction.

4.Reference

- 1) Werner, H. et.al. J. Am. Chem. Soc. 1989, 111, 7131-7437.
- 2) Elsevier, C. J. et. al. J. Am. Chem. Soc. 2005, 44, 2026–2029.
- 3) Elsevier, C. J. et. al. Angew. Chem. Int. Ed. 2008, 47, 3223–3226.