Catalyst Selection Based on Intermediate Stability Measured by Mass Spectrometry

Jeroen Wassenaar, Eveline Jansen, Willem-Jan van Zeist, F. Matthias Bickelhaupt*,

Maxime A. Siegler, Anthony L. Spek and Joost N. H. Reek*

Nature Chemistry 2010, 2, 417–421.

1. Introduction

1-1. Catalyst development

a) Rational catalyst design

b) Generation of diversity followed by selection

Enzyme
nature's most successful catalyst
natural selection: "survival of the fittest"

 \rightarrow Efficient selection method capable of selecting the best catalyst from a <u>mixture</u> is desirable.

<u>1-2</u>. *Exapmles of reported selection method: How to select the best catalyst (reaction rate, stereoselectivity, etc.)* a) Select the catalyst which lowers the activation barrier

Scheme 1. Molecular imprinting with TSA in Ru-catalyzed transfer hydrogenation of ketones

• In one example, phosphinato complex **B** was utilized as transition state analogue (TSA) of actual TS **A** in Ru-catalyzed transfer hydrogenation of ketones (Scheme 1).¹

• Complex **C** having TS-like structure was copolymerized to give the highly crosslinked jet porous polymer **D**, whose phosphinato moiety was subsequently cleaved off to give polymer **E**, which has an cavity with the appropriate shape for the reaction of the corresponding ketone.

• The transfer hydrogenation reaction using polymer **E** was more active, and substrate-selective for the ketone used for molding than the polymer without such a cavity.

b) Selection method by examining catalytic intermediates

Scheme 2. Kinetic resolution of allylic esters by Pd-catalyzed allylic substitution

- In one example, ESI-MS was used to determine the ligand with the highest kinetic resolution ability in Pd-catalyzed allylic substitution reaction (Scheme 2).²
- Oxidative addition of a racemic mixture of **F** and **G** to PdL_2 affords Pd-allyl complexes **H** and **I**, whose ratio reflects the catalyst's ability to discriminate between two enantiomers **F** and **G**.
- In order to distinguish **H** and **I** in ESI-MS measurement, mass-labeled psesudoenantiomers **H'** and **I'**, which possess a substituent with a different mass in the position too far from the reactive part to affect the reaction were employed.
- Analysis of the reaction mixture by ESI-MS successfully predicted the resolution ability of a chiral ligand.

→ Generally speaking, the selection method based on property of intermediate is more convenient because it is much easier to understand intermediates than more elusive transition states.

1-3. This work

Authors have developed a new catalyst selection method which focuses on the stability of catalytic intermediates equilibrated in a mixture using electrospray ionization mass spectrometry (ESI-MS), and applied it for the ligand optimization of Pd-catalyzed allylic alkylation reactions.

2. Results and Discussion

2-1. Author's assumption: relationship between stability of intermediate and activation energy

- Higher reaction rate = lower activation energy (*E*_a) is achieved by
 - a) stabilization of transition state
 - b) destabilization of reactant (this work)
- According to Marcus theory, TS is affected to a less extent, when the reactant is raised or lowered in energy, especially if it is late TS ($|E_2 E_1| > |E_{TS2} E_{TS1}|$).
- \rightarrow Relative stability of reactant rather than TS determines $E_{a.}$
- When E_2 is less stable ($E_2 > E_1$), E_{a2} is lower ($E_{a2} < E_{a1}$).

Figure 1. Potential energy diagram of Pd-catalyzed allylic alkylation

2-2. Proof of Principle: Pd-catalyzed allylic alkylation

• Rate-determining step in Pd-catalyzed allylic alkylation is nucleophilic attack to Pd- π -allyl intermediate with late TS.³

 \rightarrow The reaction fulfills the conditions outlined above (2-1).

• The <u>least stable</u> $Pd-\pi$ -allyl intermediate should lead to the <u>most active</u> catalyst: "survival of the weakest".

2-2-1. New catalyst selection method using ESI-MS

• 6 diphosphine ligands with different bite angles and steric properties were used to prepare the corresponding Pd complexes **1a–1c** and **2a–2c**.

• One equivalent of 1a was mixed with equimolar amounts of dppp and dppb to generate a dynamic library of Pd-allyl intermediates (Scheme 3).

• In order to exclude the trapping of kinetic mixtures, experiments starting with 1b and 1c were also conducted to give the identical data.

1a	+	dppp	+	dppb						
		or			1 h	X 1a	+	Y 1b	+	Z 1c
dppe	+	1b	+	dppb		(1 X) dopo	-	(1 V) doop	-	(1, 7) doop
		or			aichioromethane	(I=X) uppe	т	(1-1) uppp	т	(1–2) uppb
dppe	+	dppp	+	1c				(X + Y + Z =	1, 0	≤ X, Y, Z ≤ 1)

• The resulting equilibrium mixture was analyzed by ESI-MS (Figure 2).

Figure 2. ESI-MS spectrum of a dynamic library of Pd-allyl complexes for the ligand series 1) 1a–1c and 2) 2a–2c

2-2-2. Catalytic reaction with Pd complexes

Table 1. Pd-catalyzed allylic alkylation of crotyl acetate

OAc	[Pd] (0.05 NaCMe(CO ₂ THF	mol %) Et) ₂ (2 eq)	CMe(CO ₂ Et) ₂ E/Z			CMe(CO ₂ Et) ₂
-	catalyst	TOF ^a	linear/branch	E/Z	_	
_	1a	2.0	80/20	86/14		
	1b	2.9	83/17	92/8		
	1c	8.9	82/18	96/4		
	2a	0.7	91/9	71/29	-	
	2b	1.5	96/4	67//33		
	2c	3.8	98/2	87/13		

^a Turnover frequency determined at 20% conversion in h⁻¹.

• The trend in reaction rate (1c > 1b > 1a, 2c > 2b > 2a) is consistent with that obtained by the ESI-MS selection method.

2-2-3. Thermodynamic parameters

a) Experimental relative energy of Pd- allyl complex: $\Delta G_{MS} = -RT \ln(I_A/I_B)$ (*I*: intensity of ESI-MS)

b) Experimental relative activation energy: $\Delta E_a = -RT \ln(k_A/k_B)$ (*k*: turnover frequency)

c) Theoretical relative energy of Pd-allyl complex: $\Delta E_{\rm DFT}$

Tabel 2. Relative energies

• Experimental $\Delta G_{\rm MS}$ values correspond well with theoretical $\Delta E_{\rm DFT}$ values.

• The degree to which ΔE_a is lowered is much smaller than the effect on the $\Delta G_{MS}(|\Delta G_{MS}| > |\Delta E_a|)$.

→ Consistent with the initial assumption based on Marcus theory.

Pd-allyl	∆ <i>G</i> _{MS} (kcal mol ^{–1})	∆ <i>E</i> _{DFT} ^a (kcal mol ⁻¹)	ΔE_{a} (kcal mol ⁻¹)		
1a	0.0	0.0	0.0		
1b	0.4	0.4	-0.3		
1c	2.8	3.9	-0.9		
2a	0.0	-	0.0		
2b	0.6	-	-0.5		
2c	2.9	_	-1.0		

^a In the absence of OTf⁻ counterion at ZORA-BLYP/TZ2P level.

2-4. Application to another reaction

• Pd-catalyzed asymmetric allylic alkylation of *rac*-diphenylpropenyl acetate with IndolPhos was performed (Scheme 4).

• Equimolar amounts of five IndolPhos ligands 3a-3e with different steric and electronic properties were mixed with 1 equivalent of a precursor, $[Pd(\eta^3-1,3-Ph_2-allyl)(MeCN)_2]PF_6$.

• After equilibration for 3 days, relative abundance 3a < 3b < 3c < 3d < 3e was determined by ESI-MS.

• The order of TOF 3a > 3b > 3c > 3d > 3e determined by GC monitoring correlates inversely with relative stability (Figure 3).

→ Author's concept "survival of the weakest" was again supported.

Scheme 4. IndolPhos-Pd catalyzed allylic alkylation

Figure 3. Relative abundance and TOF

3. Conclusion

Authors developed a new technique to select the most active catalyst from a dynamic mixture of Pd complexes for allylic alkylations. The selection method only requires an ordinary ESI-MS and can screen several ligands at the same time, making it simple and efficient.

4. References

¹ a) Polborn, K.; Severin, K. *Chem. Commun.* **1999**, 2481–2482. b) Polborn, K.; Severin, K. *Chem. Eur. J.* **2000**, *6*, 4604–4611. c) Polborn, K.; Severin, K. *Eur. J. Inorg. Chem.* **2000**, 1687–1692.

² a) Markert, C.; Pfaltz, A. *Angew. Chem. Int. Ed.* **2004**, *43*, 2498–2500. b) Markert, C.; Rösel P.; Pfaltz, A. J. Am. Chem. Soc. **2008**, *130*, 3234–3235.

³ a) Granberg, K. L.; Backvall, J.-E. *J. Am. Chem. Soc.* **1992**, *114*, 6858–6863. b) Evans, L. A.; Fey, N.; Harvey, J. N.; Hose, D.; Lloyd-Jones, G. C.; Murray, P.; Orpen, A. G.; Osborne, R.; Owen-Smith, G. J. J.; Purdie, M. *J. Am. Chem. Soc.* **2008**, *130*, 14471–14473. c) Helmchen, G.; Dahnz, A.; Dübon, Pierre.; Schelwies M.; Weihofen, R. *Chem. Commun.* **2007**, 675–691.