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1. Introduction

1-1. Amidinium carboxylate salt bridges at construction of supramolecules

¢ Construction of supramolecular structure often relies on noncovalent interaction.

Ex) metal coordination, hydrogen-bonding-driven self-assembly, hydrophobic effect...

* Hydrogen bonding: powerful tool but still difficult to be applied in complicated structure.

=> The authors had succeeded in construction of several kinds of supramolecules with amidinium

carboxylate salt bridges.

1-2-1. Previous work 1

¢ Construction of artificial double-helical assemblies (common structure in biomacromolecules)

with amidine carboxylate salt bridge' (Figure 1)
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Figure 1. Formation of salt bridge between chiral diamidine and dicarboxylic acid leading intertwisted compound

* Good points of amidinium carboxylate salt bridge:

strong bonding assisted by charge, regulating the

twist sense of the supramolecules by chirality of

bulky substituents on the nitrogen atoms

e Characterization of (R)-12 by X-ray analysis

(Figure 2)

1-2-2. Previous work 2
* The modular with
amidinium carboxylate
salt bridge in previous

work 1 could be
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Figure 2. Crystal structure of (R)-1-2 (hydrogen atoms and
solvent are omitted for clarity)
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Figure 3. Synthesis of double-stranded metallosupramolecular helical polymers

applied in construction of further helical structures, double-stranded polymers” (Figure 3).



e Formed double-stranded helical polymer which was constructed with salt bridge and metal

coordination was stable and observable by AFM (Figure 4).
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Figure 4. AFM a) height b) phase images of polymer 4 on HOPG e) calculated structure by MM calculation

1-3. Catenane
e Catenanes (Figure 5): a kind of

Recognition motif

interlocked molecules, candidates for u (interaction between the allow)
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Figure 5. Schematic image of construction of [2]catenane

nanomachines and nanodevices

<= Controllable relative motions and
physical properties of macrocycles by
stimuli

* Recognition motifs of catenane: important for synthesis of this structure and control of the

relative motions of these macrocyclic components

=> Amidinium carboxylate salt bridge was applied as the recognition motif of [2]catenane in this

study

1-4. This study
* Synthesis of novel [2]catenane (Figure 6) with the

Amidine Salt bridge

amidinium carboxylate salt bridge RCM
* Control of the relative motion of its macrocyclic

components by acid-base interactions and metal

= Carboxylic acid [2]catenane

coordination Figure 6. Schematic image of this work

2. Results and discussion

2-1. Synthesis and characterization of the [2]catenane with amidinium carboxylate salt bridge
2-1-1. Synthesis

e Synthesis of the [2]catenane was achieved via Sonogashira coupling and ring closing metathesis
(RCM) (Scheme 1).



Scheme 1. Synthesis of [2]catenane
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2-2-2. Characterization of [2]catenane 9
e Characterization of [2]catenane 9 itself was mainly done by '"H NMR (1D and 2D), ESI-MS.
e There are three possible passes to form macrocyclic compound when RCM reaction proceed on

the monomer 7a and 7b (Figure 7).
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Figure 7. Schematic image of possible products from RCM reaction of the mixture of 7a and 7b

* Difference between 7, 8, 9 was distinguished by "H NMR (Figure 7) and ESI-MS
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Figure 7. Partial "H NMR spectra (500 MHz, CDClj, rt) product.

2-2. Control over on/off switching of the salt bridge

2-2-1. Control of relative motion of [2]catenane 9 by addtion of TFA
e This [2]catenane 9 was controlled its relative

motion through controlling the state “locked” TFA
or “unlocked” acid-base interaction (Figure 8).

=> Change in "H NMR spectrum and CD

iPr,NEt

spectrum (Figure 9) "Locked" N Un‘IocIfed
Figure 8. Schematic image of control over on/off switching



¢ CD spectrum of only 9 => two 1
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2-2-2. Control of relative motion by addtion of metal
e The switch between the “locked” and “unlocked” states (Figure 8) was also achieved by Zn ion.

¢ [2]catenane 9 has conjugated m-terphenyl unit: FL (EX 300 nm, EM 440 nm)

=> Control of movement of this macrocyclic components by addition of Zn(ClO,), was

demonstrated with change in FL (Figure 10).
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Figure 10. a) Fluorescence spectra (CH,Clo/THF (10:1, v/v), rt, 0.01 mM of 9) b) Photographs of the solutions (EX: 254 nm)

* Addition of Zn* ions caused a significant enhancement of FL and red shift.
<= Zn** was coordinated to amidine residue and distance between two m-terphenyl unit increased.

* Removal of Zn** ion by addition of cryptand restored FL intensity, “locked” state.

Conclusion

The authors succeeded in applying versatile hydrogen bonding, amidinium carboxylate salt
bridge in construction of a novel optically active [2]catenane. This salt bridge was good
recognition motif in the aspect of controlling relative motion of the macrocycles via acid-base

interaction and metal coordination.
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