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1. Introduction 
1-1. Anion-π interactions vs. Cation-π interactions 
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Figure 1. Schematic side view of π-acidic 
and π-basic aromatic rings.
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Figure 2. The results of an CSD 
(Cambridge Structural Database) survey.
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• Anion-π interactions are defined as nonbonding interactions between an electron-deficient or π -acidic 
aromatic system with positive quadrupole moments Qzz and an anion (Figure 1).1 

• Contrary to general belief, anion-π interactions are more frequent than cation-π interactions (Figure 2).2 

• Anion-π interactions was used for anion transport in the transmembrane and excellent activity and anion 
selectivity were found, however, it was not possible to prove experimentally that anion-π interaction really 
exist.3, 4 

➢ In this work, a systematic study that combines both theory and experiment was performed to provide the 
direct evidence for the existence of anion-π interactions. 
 
2. Results & Discussions 
2.1 Design 
• NDIs (naphtalenediimides) have the largest positive Qzz 
and distinct facial π-acidity (Table 1).  

compound
NDI

dicyano NDI
tetracyano NDI

hexafluorobenzene
trinitrotoluene

+ 20
+ 39
+ 56
+ 9.5
+ 20

Qzz (B)
Table 1.

 
• Active-site decrowding and π -acidity are systematically 
maximized by o-methyl removal in 4 and 6 and addition of 
cyano acceptors in the core of 5 and 6.  

 Figure 3. Structure of NDIs.
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2.2 Computational study 
• Electrostatic potential surfaces imply that anion binding is expected to occur at the pyridinedion 
heterocycles, which is the highest electron deficient region (Figure 4). 
• Distance between the NDI plane and anion (Re) decreased with increasing the π-acidity and decreasing the 
steric hindrances (Table 2). 
• Cl– > Br– > NO3

– selectivity was expected from the interaction energy (Eint) (Table 2). 
 

NDI

3
4
5
6
7
8

Re (Å)a

2.86
2.85
2.70
2.63
2.50
3.02

2.97
2.87
2.86
2.79
2.74
2.93

NO3
–Cl–

Table 2. Summary of anion binding data for melecular 
modeling.a, b

 Figure 4. Molecular modeling of anion-π interactions.

- 83.3
- 92.1
- 136.4
- 142.7
- 188.8
- 121.0

Eint (kJ mol-1)b

NO3
–Cl– Br–

- 72.0
- 79.9
- 123.1
- 129.8
- 173.7
- 104.6

- 69.9
- 69.5
- 110.9
- 110.1
- 143.6
- 95.4

aEquilibrium distance between chloride (nitrate) and NDI plane in monomeric 
complexes; bInteraction energy in monomeric NDI anion complexs computed with 
the PBE1PBE/6-311 ++G** //PBE1PBE/6-311G** method.  

 
2.3 Direct evidence for anion-π interaction 
2.3.1 NMR spectroscopy  
• It was not meaningful because binding was too weak and NMR 
shifts were too small. 
2.3.2 ESI-FTICR-MS-MS 
• ESI-FTICR-MS-MS (electrospray ionization Fourier-transform 
ion cyclotron resonance tandem mass spectrometry) experiments 
appeared ideal to deliver the desired direct experimental evidence 
for anion-π interactions. 

➢ Quite fragile NDI-anion complexes of 3–6 were observed for 
Cl–, Br– and NO3

–. 
• For example, an equimolar mixture of NDIs 3 and 4 was 
electrosprayed together with one equivalent of NEt4Cl, and 
corresponding heterodimer 3 + 4 + Cl– was isolated (Figure 5a) 
• Fragmentation of heterodimer was induced by irradiation with IR laser.  

➢ After 100 ms irradiation, Cl– stared to appear together with monomeric NDI 4 alone (Figure 5b). 
➢ After 200 ms irradiation, the peak for 3 + 4 + Cl– nearly disappeared and a new peak for 3 + Cl– appeared 
(Figure 5c) 

➢ These observations demonstrated that NDI 4 binds Cl– better than NDI 3. 
• Found selectivity sequence was 6 > 5 > 4 > 3, suggesting increasing anion affinity with increasing π-acidity 
and decrowding of the anion-π binding site.  

Figure 5. Laser-induced ESI-MS-MS 
fragmentation of heterodimer complexes.
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2.4 Anion transport activity  
2.4.1 Vesicle-based method for measuring anion transport 
• The transport activity of NDIs 2-11 was determined in large unilamellar vesicles (LUVs) composed of egg 
yolk phosphatidylcholine (EYPC) containing different fluorescent probes. 
• NDIs are thought to self-assemble into transmembrane dimers of single-leaflet bundles (c) that are 
stabilized by hydrophilic head (b, c) and vertical (b) or horizontal (d) crosslinking (Figure 6). 
• Anion transport occurs along the NDI surface (Figure 7).4 

 

Figure 6. Hypothesized active suprastructures of anion-π transporters.
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Figure 7. The concept of anion-π transport.
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• As fluorescent probes, HPTS (pH 
sensitive) and CF were used.  
• Selectivity sequence for anion 
transport were determined with HPTS 
assay (Figure 9, 10, Table 3). 
• EYPC-LUVs ⊃ HPTS were added to buffer (100 mM MCl (M+ = Li+, Na+, K+, Rb+, Cs+) or 100 mM NaX 
(X– = F–, OAc–, Cl–, NO3

–, Br–, I–, SCN–, ClO4
–, SO4

2–), pH 7.0). Time-dependent change in fluorescene 
intensity was monitored (Figure 9, 10). 
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Figure 9. The HPTS assay for anion antiporter.
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NDI

3
4
5
6
2
8
9

10
11

–
2.2
2.4
2.1
1.8
–

1.6
9.0
1.1

1.0
1.1
1.1
1.5
1.4
1.2
1.0
1.3
1.1

NO3
–/

AcO–Cl–/Br–

Table 3. Summary of transmembrane transport data for NDI 2-11.
EC50 (µM)

HPTS CF
150 ± 20

27 ± 1
37 ± 2

0.33 ± 0.03
22 ± 2

110 ± 20
32 ± 1

7.8 ± 0.7
8.7 ± 1.4

> 100
17 ± 2
 10 ± 1
> 100
95 ± 8

–
8.0 ± 0.7
4.5 ± 0.1
8.2 ± 0.2

–
0.7
0.8
6.0
2.8
0.7
0.8
0.4
1.0

Cl–/I– Na+/K+

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.3
1.0

Entry

1
2
3
4
5
6
7
8
9  

 

EYPC (25 mg)
CHCl3 (0.5 mL)
MeOH (0.5 mL)

1. evaporation
40 °C
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Figure 8. Preparation of prove-containing vesicle.

2. polycarbonate 
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size 100 nm)
3. GPC
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pH 7.0
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EC50 is the effective monomer concentration 
needed to reach 50% activity.
e.g. EC50 (HPTS) < EC50 (CF) demonstrates 
that ion transport is more efficient than dye 
export or vesicle destruction.
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Single-leaflet bundles (NDI 3–6, 9) 

• NDI 3 was inactive; decrowded and π-acidified NDI 4 and 5 were 
clearly more active (Entry 1–3) 

➢ Decrowding and π-acidification improve the activity. 
• The anion selectivity sequence of NDI 4 and 5 showed increasing 
activity with increasing hydration energy (Entry 1–3, Figure 10a, 
10b). 

➢ Strong binding to the transporter to overcompensate the cost of at 
least partial dehydration. 

➢ π-acidity and active-site decrowding govern halide selectivity 
(Cl– > Br– > I–). 
• Decrowded and π-acidified NDI 6 exhibited nanomolar activity in 
HPTS, whereas CF assay was not detectable (Entry 4, Figure 10c). 
Vertical crosslinking (NDI 2) 

• Stabilization of the active dimeric bundles by vertical crosslinking 
resulted in an intermediate selectivity (Entry 5, Figure 10d). 
Horizontal crosslinking (NDI 8) 

• Formal horizontal crosslinking resulted in loss in activity (Entry 6) 

➢ NDIs don not act as anion carriers. 
Hydrophilic anchoring (NDI 10, 11) 

• Negatively charged NDI 10 gave outstanding halide selectivity without oxyanion recognition or CF 
exclusion (Entry 10, Figure 10e). 

➢ Charge repulsion at the termini position would loosen the active suprastructure, minimizing the π, 
π-enhanced anion-π interactions accounting for nitrate selectivity (because nitrate is planar oxyanion with 
many π -bonds, π -π interaction in π -anion-π complex can be possible.) but provide free access to anion-π 
bindin sites on monomer surfaces, accounting for chloride selectivity. 
• Positively charged NDI 11 delete all meaningful selectivity (Entry 11, Figure 10f). 
 
3. Conclusion 
• Direct evidence for the anion-π interactions is obtained by tandem mass spectrometric experiments with 
NDI models where only the π-acidic surface is left for anions to interact with. 
• π-acidity and active-site decrowding are found to govern halide selectivity (Cl– > Br– > I–). 
• Supramolecular organization accounts for oxyanion selectivity (NO3

– > ClO4
– > SO4

– > AcO–). 
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Figure 10. Transport selectivity. 
Dependence of the fractional transport 
activity Y of NDIs 4 (a, b), 6 (c), 2 (d), 
10 (e) and 11 (f) in the HPTS assay.


