Experimental evidence for the functional relevance of anion- π interactions

Ryan E. Dawson, Andreas Hennig, Dominik P. Weimann, Daniel Emery, Velayutham Ravikumar, Javier Montenegro, Toshihide Takeuchi, Sandro Gabutti, Marcel Mayor, Jiri Mareda, Christoph A. Schalley, and Stefan Matile *Nature Chemistry* 2010, *2*, 533–538.

1. Introduction

1-1. Anion- π interactions vs. Cation- π interactions

• Anion- π interactions are defined as nonbonding interactions between an electron-deficient or π -acidic aromatic system with positive quadrupole moments Q_{zz} and an anion (Figure 1).¹

• Contrary to general belief, an ion- π interactions are more frequent than cation- π interactions (Figure 2).²

 \bullet Anion- π interactions was used for anion transport in the transmembrane and excellent activity and anion

selectivity were found, however, it was not possible to prove experimentally that anion- π interaction really exist.^{3,4}

> In this work, a systematic study that combines both theory and experiment was performed to provide the direct evidence for the existence of anion- π interactions.

2. Results & Discussions

2.1 Design

• NDIs (naphtalenediimides) have the largest positive Q_{zz} and distinct facial π -acidity (Table 1).

• Active-site decrowding and π -acidity are systematically maximized by *o*-methyl removal in **4** and **6** and addition of cyano acceptors in the core of **5** and **6**.

Figure 3. Structure of NDIs.

2.2 Computational study

• Electrostatic potential surfaces imply that anion binding is expected to occur at the pyridinedion heterocycles, which is the highest electron deficient region (Figure 4).

• Distance between the NDI plane and anion (R_e) decreased with increasing the π -acidity and decreasing the steric hindrances (Table 2).

• Cl⁻ > Br⁻ > NO₃⁻ selectivity was expected from the interaction energy (E_{int}) (Table 2).

Figure 4. Molecular modeling of anion-π interactions.

2.3 Direct evidence for anion- π interaction

2.3.1 NMR spectroscopy

• It was not meaningful because binding was too weak and NMR shifts were too small.

2.3.2 ESI-FTICR-MS-MS

• ESI-FTICR-MS-MS (electrospray ionization Fourier-transform ion cyclotron resonance tandem mass spectrometry) experiments appeared ideal to deliver the desired direct experimental evidence for anion- π interactions.

> Quite fragile NDI-anion complexes of **3–6** were observed for Cl^- , Br^- and NO_3^- .

• For example, an equimolar mixture of NDIs **3** and **4** was electrosprayed together with one equivalent of NEt₄Cl, and corresponding heterodimer $3 + 4 + Cl^{-}$ was isolated (Figure 5a)

• Fragmentation of heterodimer was induced by irradiation with IR laser.

 $\ensuremath{\textit{Table 2.}}\xspace$ Summary of anion binding data for melecular modeling. $^{a,\,b}$

NDI	R _e (Å) ^a		<i>E</i> _{int} (kJ mol⁻¹) ^b			
	CI⁻	NO ₃ -	CI⁻	Br-	NO ₃ -	
3 4 5 6 7	2.86 2.85 2.70 2.63 2.50 3.02	2.97 2.87 2.86 2.79 2.74 2.93	- 83.3 - 92.1 - 136.4 - 142.7 - 188.8 - 121.0	- 72.0 - 79.9 - 123.1 - 129.8 - 173.7 - 104.6	- 69.9 - 69.5 - 110.9 - 110.1 - 143.6 - 95.4	

^aEquilibrium distance between chloride (nitrate) and NDI plane in monomeric complexes; ^bInteraction energy in monomeric NDI anion complexs computed with the PBE1PBE/6-311 ++G⁻ //PBE1PBE/6-311G⁻ method.

Figure 5. Laser-induced ESI-MS-MS fragmentation of heterodimer complexes.

> After 100 ms irradiation, Cl⁻ stared to appear together with monomeric NDI 4 alone (Figure 5b).

> After 200 ms irradiation, the peak for $3 + 4 + Cl^{-}$ nearly disappeared and a new peak for $3 + Cl^{-}$ appeared (Figure 5c)

> These observations demonstrated that NDI 4 binds Cl^- better than NDI 3.

• Found selectivity sequence was 6 > 5 > 4 > 3, suggesting increasing anion affinity with increasing π -acidity and decrowding of the anion- π binding site.

2.4 Anion transport activity

2.4.1 Vesicle-based method for measuring anion transport

• The transport activity of NDIs 2-11 was determined in large unilamellar vesicles (LUVs) composed of egg yolk phosphatidylcholine (EYPC) containing different fluorescent probes.

• NDIs are thought to self-assemble into transmembrane dimers of single-leaflet bundles (c) that are stabilized by hydrophilic head (**b**, **c**) and vertical (**b**) or horizontal (**d**) crosslinking (Figure 6).

• Anion transport occurs along the NDI surface (Figure 7).⁴

• As fluorescent probes, HPTS (pH sensitive) and CF were used.

Selectivity sequence for anion ٠ transport were determined with HPTS assay (Figure 9, 10, Table 3).

Figure 8. Preparation of prove-containing vesicle.

• EYPC-LUVs \supset HPTS were added to buffer (100 mM MCl (M⁺ = Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) or 100 mM NaX $(X^- = F^-, OAc^-, Cl^-, NO_3^-, Br^-, I^-, SCN^-, ClO_4^-, SO_4^{2-})$, pH 7.0). Time-dependent change in fluorescene intensity was monitored (Figure 9, 10).

Figure 9. The HPTS assay for anion antiporter.

transport activity: $X^- > Y^- > Z^-$

Table 3. Summary of transmembrane transport data for NDI 2-11.								HO₃S OH	CO₂H
Entry				NO ₃ -/	NI-+///+	EC ₅₀ (μM)			
Linuy	NDI	СГЛ	Сі /Ы	AcO ⁻	Na /K	HPTS	CF		
1	3	_	1.0	-	1.0	150 ± 20	> 100	но₃ѕ∽∽∽ѕо₃н	но
2	4	2.2	1.1	0.7	1.0	27 ± 1	17 ± 2	UDOT	
3	5	2.4	1.1	0.8	1.0	37 ± 2	10 ± 1	HPSI nH sonsitivo	carboxynuorescem (CF)
4	6	2.1	1.5	6.0	1.0	0.33 ± 0.03	> 100	prisensuve	
5	2	1.8	1.4	2.8	1.0	22 ± 2	95 ± 8	EC _{so} is the effectiv	ve monomer concentration
6	8	_	1.2	0.7	1.0	110 ± 20	_	needed to reach 5	0% activity
7	9	1.6	1.0	0.8	1.0	32 ± 1	8.0 ± 0.7	/ e.a. EC (HPTS)	< EC (CE) demonstrates
8	10	9.0	1.3	0.4	1.3	7.8 ± 0.7	4.5 ± 0.1	that ion transport i	s more efficient than dve
9	11	1.1	1.1	1.0	1.0	8.7 ± 1.4	8.2 ± 0.2	export or vesicle d	estruction

Single-leaflet bundles (NDI 3-6, 9)

• NDI **3** was inactive; decrowded and π -acidified NDI **4** and **5** were clearly more active (Entry 1–3)

> Decrowding and π -acidification improve the activity.

• The anion selectivity sequence of NDI **4** and **5** showed increasing activity with increasing hydration energy (Entry 1–3, Figure 10a, 10b).

> Strong binding to the transporter to overcompensate the cost of at least partial dehydration.

> π -acidity and active-site decrowding govern halide selectivity (Cl⁻ > Br⁻ > l⁻).

• Decrowded and π -acidified NDI **6** exhibited nanomolar activity in HPTS, whereas CF assay was not detectable (Entry 4, Figure 10c).

Vertical crosslinking (NDI 2)

• Stabilization of the active dimeric bundles by vertical crosslinking resulted in an intermediate selectivity (Entry 5, Figure 10d).

Horizontal crosslinking (NDI 8)

• Formal horizontal crosslinking resulted in loss in activity (Entry 6)

 \succ NDIs don not act as anion carriers.

0.5 0.4 0.3 0.3 0.2 0.1 -500 -400 -300 -500 -400 AGhut (kJ mol-1) AG (kJ mol-1) 0.7 so. SO. 0.7 0.6 0.6 0.5 0.5 0.4 0.3 0.4 0.2 0.3 č) s 0.2 -400 500 -300 (k) ΔG (kJ mol-1) e 0.6 0.6 0.5 0.4 0.3 0.2 0.1 -400 -400 -300 ., (kJ mol AG., (kJ mol)

Figure 10. Transport selectivity. Dependence of the fractional transport activity Y of NDIs 4 (a, b), 6 (c), 2 (d), 10 (e) and 11 (f) in the HPTS assay.

Hydrophilic anchoring (NDI 10, 11)

• Negatively charged NDI **10** gave outstanding halide selectivity without oxyanion recognition or CF exclusion (Entry 10, Figure 10e).

> Charge repulsion at the termini position would loosen the active suprastructure, minimizing the π , π -enhanced anion- π interactions accounting for nitrate selectivity (because nitrate is planar oxyanion with many π -bonds, π - π interaction in π -anion- π complex can be possible.) but provide free access to anion- π bindin sites on monomer surfaces, accounting for chloride selectivity.

• Positively charged NDI 11 delete all meaningful selectivity (Entry 11, Figure 10f).

3. Conclusion

• Direct evidence for the anion- π interactions is obtained by tandem mass spectrometric experiments with NDI models where only the π -acidic surface is left for anions to interact with.

• π -acidity and active-site decrowding are found to govern halide selectivity (Cl⁻ > Br⁻ > l⁻).

• Supramolecular organization accounts for oxyanion selectivity ($NO_3^- > ClO_4^- > SO_4^- > AcO^-$).

4. References

- 1. Schottel, B. L.; Chifotides, H. T.; Dunbar, K. R. Chem. Soc. Rev. 2008, 37, 68-83.
- 2. Gamez, P.; Mooibroek, T. J.; Teat, S. J.; Reedijk, J. Acc. Chem. Res. 2007, 40, 435-444.
- 3. Gokel, G. W.; Bollot, G.; Mareda, J.; Matile, S. Org. Biomol. Chem. 2007, 5, 3000-3012.
- 4. Mareda, J.; Matile, S. Chem. Eur. J. 2009, 15, 28-37.