Basic Physical Chemistry I

Q33

Summarize the principle of Mössbauer spectrometry.
2×2 Matrices $I, \sigma_{x}, \sigma_{y}, \sigma_{z}$ is defined as

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

These are Pauli Matrices. Prove that arbitrary 2×2 matrix can be described by the linear combination of Pauli Matrices and unit Matrix I.

Q34
For arbitrary three dimension vectors \vec{a}, \vec{b}, prove the following relation using Pauli Matrices. Here, $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is satisfied.

$$
(\vec{\sigma}, \vec{a})(\vec{\sigma}, \vec{b})=(\vec{a}, \vec{b}) I+i(\vec{\sigma}, \vec{a} \times \vec{b})
$$

Q35
Derive the spin-orbit coupling term from Biot-Savert law.
Q36
Derive the spin-orbit coupling term from Dirac equation.
Q37
Explain why atomic radii in Au and Ag is almost the same.

Q38

Summarize the principle of x-ray magnetic circular dichroism (XMCD).

Q39

Explain the principles of bi-polar transistor and field-effect transistor.

Q40

Explain about your research if relates to spectroscopy.

