

Jun Okabayashi 2024.4.30

$\mathbf{Q33}$

Summarize the principle of Mössbauer spectrometry. 2×2 Matrices $I, \sigma_x, \sigma_y, \sigma_z$ is defined as

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

These are Pauli Matrices. Prove that arbitrary 2×2 matrix can be described by the linear combination of Pauli Matrices and unit Matrix I.

$\mathbf{Q34}$

For arbitrary three dimension vectors \vec{a} , \vec{b} , prove the following relation using Pauli Matrices. Here, $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ is satisfied.

$$(\vec{\sigma}, \vec{a})(\vec{\sigma}, \vec{b}) = (\vec{a}, \vec{b})I + i(\vec{\sigma}, \vec{a} \times \vec{b})$$

$\mathbf{Q35}$

Derive the spin-orbit coupling term from Biot-Savert law.

Q36

Derive the spin-orbit coupling term from Dirac equation.

$\mathbf{Q37}$

Explain why atomic radii in Au and Ag is almost the same.

Q38

Summarize the principle of x-ray magnetic circular dichroism (XMCD).

$\mathbf{Q39}$

Explain the principles of bi-polar transistor and field-effect transistor.

$\mathbf{Q40}$

Explain about your research if relates to spectroscopy.