

Jun Okabayashi 2024.4.23

$\mathbf{Q21}$

Calculate the wave number (cm^{-1}) of 1 eV photons. Further, estimate the energy in unit of eV for 500 nm wave length.

$\mathbf{Q22}$

Estimate the Coulomb repulsion energy in unit of eV when two electrons are located with the distance of 1, 2, and 3 Å cases. Use the values of $e=1.6\times10^{-19}$ C and $e=8.85\times10^{-12}$ F.

Q23

Prepare the d^6 Tanabe-Sugano (TS) diagram.

- 1. The line around $\Delta/B \sim 20$ means the change of lowest term. Answer the lowest term for Δ/B is larger and smaller cases.
- 2. When $\Delta/B = 30$, the energy term symbols are plotted from the low energies: ${}^{1}A_{1g}$ (ground state), ${}^{3}T_{1g}$, ${}^{5}T_{2g}$, ${}^{3}T_{2g}$, ${}^{1}T_{1g}$, and ${}^{1}T_{2g}$. By using the TS diagram, estimate the energy difference between ${}^{1}A_{1g}$ and other excited states. Assuming $B = 1 \times 10^{3}$ cm⁻¹, answer in the units of wave number cm⁻¹.
- 3. In the five cases discussed in above Q.23-2, only ${}^{5}T_{2g}$ case shows twice larger slope than other cases. From the viewpoint of electron configuration, explain the reason.

$\mathbf{Q24}$

For $O_{\rm h}$ symmetry, confirm the following direct product relation using character table.

$$T_2 \times T_2 = A_1 + E + T_1 + T_2$$

$\mathbf{Q25}$

For $O_{\rm h}$ symmetry, explain the following energy term splitting of free ion G states using character table.

$$G \to A_1 + E + T_1 + T_2$$

$\mathbf{Q26}$

Summarize the principle of synchrotron-radiation beam generation.

$\mathbf{Q27}$

Prove the Fermi's golden rule.

— Basic Physical Chemistry I - 1/2 —

$\mathbf{Q28}$

Summarize the principle of photoemission spectroscopy.

$\mathbf{Q29}$

Explain the origin of chemical shift in XPS.

Q30

Draw the C 1s XPS line shapes in CH₃COOCH₃ and CH₃-CHCl-CHI-CH₂-CH₃.

Q31

Absorption spectra of $[Cr(H_2O)_6]^{n+}$ ions are shown in Figure. Determine crystal field splitting Δ and Coulomb interaction energy *B* by using Tanabe-Sugano diagram for d^3 .

Fig: Electron absorption spectroscopy of Cr complexes.

$\mathbf{Q32}$

Explain the reason why Coulomb potential in $O_{\rm h}$ symmetry is written as follows. Here, $A = \frac{6Ze^2}{a}$ and $D = \frac{35Ze^2}{4a^5}$ are defined using the distance a, electron number in center ions Z, and electron charge e.

$$U = A + D\left(x^4 + y^4 + z^4 - \frac{3}{5}r^4\right)$$

(Summation of symmetric six kinds of sites and spherical harmonic functions are necessary for the calculation.)