Basic Physical Chemistry I

Q12

Explain Goodenough-Kanamori rule for $d^{3}-d^{8}$ configurationin O_{h} symmetry for both 180° and 90° cases. Further, confirm the same results for $d^{8}-d^{3}$ cases.

Q13

For O_{h} symmetry, confirm the following direct product relation using character table.

$$
E \times T_{1}=T_{1}+T_{2}
$$

Q14

Absorption spectra of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ ions are shown in Figure.
(1) Assign the peaks of ν_{1} and ν_{2} for d^{6} low-spin configuration. That is, explain the excitation processes in these peaks by using Tanabe-Sugano diagram.
(2) Determine crystal field splitting Δ and Coulomb interaction energy B.
(3) Confirm that the ligand field strength obeys the Spectrochemistry series.

Fig: Electron absorption spectroscopy of Co complexes.

Q15

Describe 45 cases in d^{2} configuration for free ions with term symbol (spectrum term). For each configuration, add the term symbol.

Q16
Prove the following relation: Optical transitions are arrowed only in the cases that the difference of orbital angular momentum is ± 1.

$$
\Delta L= \pm 1
$$

Q17

Prove the 'Lambert-Beer law'. Do not forget to mention the units for each parameter.
Q18
Solve the 5×5 determinant for crystal field splitting shown in p. 34 .

Q19

Draw the energy diagram based on molecular orbital method for $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$. Here, for ligand orbitals of $\left(\mathrm{NH}_{3}\right)$, he occupation of $a_{1 g}, T_{1 g}$, and e_{g} states is assumed.

Q20

Plot the ligand field stabilized energy (LFSE) from d^{1} to d^{9}. Horizontal and vertical axes should be d electron number and LFSE, respectively.

