

Jun Okabayashi 2022.4.26

$\mathbf{Q21}$

Summarize the principle of synchrotron-radiation beam generation.

$\mathbf{Q22}$

Prove the Fermi's golden rule.

$\mathbf{Q23}$

Estimate the energy splitting under the spin-orbit coupling ξ between $j = l + \frac{1}{2}$ and $j = l - \frac{1}{2}$.

$\mathbf{Q24}$

Summarize the principle of photoemission spectroscopy.

$\mathbf{Q25}$

Explain the origin of chemical shift in XPS.

Q26

Draw the C 1s XPS line shapes in CH₃COOCH₃ and CH₃-CHCl-CHI-CH₂-CH₃.

Q27

Absorption spectra of $[Cr(H_2O)_6]^{n+}$ ions are shown in Figure. Determine crystal field splitting Δ and Coulomb interaction energy *B* by using Tanabe-Sugano diagram for d^3 .

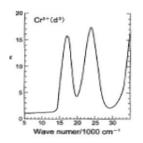


Fig: Electron absorption spectroscopy of Cr complexes.

$\mathbf{Q28}$

Explain the reason why Coulomb potential in $O_{\rm h}$ symmetry is written as follows. Here, $A = \frac{6Ze^2}{a}$ and $D = \frac{35Ze^2}{4a^5}$ are defined using the distance a, electron number in center ions Z, and electron charge e.

$$U = A + D\left(x^4 + y^4 + z^4 - \frac{3}{5}r^4\right)$$

(Summation of symmetric six kinds of sites and spherical harmonic functions are necessary for the calculation.)