

# Basic Physical Chemistry I

Jun Okabayashi 2020.6.9

#### $\mathbf{Q12}$

Explain Goodenough-Kanamori rule for  $d^3 - d^8$  configuration in  $O_{\rm h}$  symmetry for both 180° and 90° cases. Further, confirm the same results for  $d^8 - d^3$  cases.

# **Q13**

For  $O_{\rm h}$  symmetry, confirm the following direct product relation using character table.

$$E \times T_1 = T_1 + T_2$$

#### $\mathbf{Q14}$

Absorption spectra of  $[Co(en)_3]^{3+}$ ,  $[Co(NH_3)_6]^{3+}$ , and  $[Co(H_2O)_6]^{3+}$  ions are shown in Figure.

- (1) Assign the peaks of  $\nu_1$  and  $\nu_2$  for  $d^6$  low-spin configuration. That is, explain the excitation processes in these peaks by using Tanabe-Sugano diagram.
- (2) Determine crystal field splitting  $\Delta$  and Coulomb interaction energy B.
- (3) Confirm that the ligand field strength obeys the *Spectrochemistry* series.

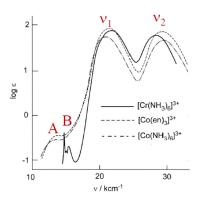



Fig: Electron absorption spectroscopy of Co complexes.

#### Q15

Describe 45 cases in  $d^2$  configuration for free ions with term symbol (spectrum term). For each configuration, add the term symbol.

#### Q16

Prove the following relation: Optical transitions are arrowed only in the cases that the difference of orbital angular momentum is  $\pm 1$ .

$$\Delta L = \pm 1$$

# Q17

Prove the 'Lambert-Beer law'. Do not forget to mention the units for each parameter.

# $\mathbf{Q}18$

Solve the  $5\times5$  determinant for crystal field splitting shown in p. 25.

#### **Q19**

Confirm the relationship between eV and cm<sup>-1</sup> units.

#### $\mathbf{Q20}$

Plot the ligand field stabilized energy (LFSE) from  $d^1$  to  $d^9$ . Horizontal and vertical axes should be d electron number and LFSE, respectively.