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All-cis 1,2,3,4,5,6-hexafluorocyclohexane is a facially polarized cyclohexane
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1. Introduction
1.1. Fluorinated compounds

* Fluorine is often used to modulate the properties of organic materials.

— Medicine, pesticide, polymer (PTFE etc.), electric materials (PVDF etc.) and so on...
* C-F bond is the strongest and most polarized.

— Fluorinated compounds has polar hydrophobic properties.

* Polar molecules are important for organic electronics application.

1.2. Cyclohexane
* In linear alkane C-F bonds tend to orientate away from each other due to dipolar repulsion.

— If the conformation was fixed as aligned, highly polar organic molecules would result.
* Good core structural motif defined by its clear conformational preference.

— It is suitable core structure to align C-F bonds for polar molecules.

1.3. Previous work
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1.4. This work

* All-cis 1,2,3,4,5,6-hexafluorocyclohexane was synthesized.

* Molecular structure and crystal packing was analyzed from X-ray crystallography.

* Dipole moment and energy barrier of flipping was calculated from computational analysis and

NMR study.



1.5. Isomers of hexafluorocyclohexane

* 8 configurations and a total 15 possible conformational isomers.
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Figure 2. Isomers of hexafluorocyclohexane and its ground energies
— All-cis (“all-up”) hexafluorocyclohexane has highest ground energy ( > 15 kcal mol’

larger than most stable isomer.)

2. Results and Discussion

2.1. Synthesis
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Figure 3. Synthetic route

* Synthesis was started from myo-inositol (2) via key intermediate (3)

* The strategy is stereospecific conversion of C-O to C-F bonds via S\2 reactions occurring with
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inversions of configuration.
* Direct deoxofluorination of compound 5 was failed to obtain compound 1 with DAST, Deoxofluor,
XtalFluor-E.

* Due to large steric and electronic repulsion, elimination reaction might proceeded during last step.
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Figure 4. NMR spectra of reaction mixture of last step and product

e From NMR spectra of reaction mixture of last step, there are unreacted compound 8,
pentafluoroalcohol 7, pentafluoro alkene and desired compound 1.
* Pentafluoroalcohol 7 was generated via fluorolysis of triflyl group rather than fluoride ion
displacement.

—Unusual reaction course for triflyl group, which indicates the difficulty in achieving the
final substitution reaction.
* Total yield of compound 1 from 2 was

ca. 2% (0.8 mg).

2.2. Structural analysis

e Compound 1 remained classic chair o

conformation for cyclohexane ring.

* Six C-F bonds locate alternating axial
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shorter than the triaxial F...F distances  Figure 5. Molecular structure and electrostatic potential
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— Larger tension between the axial/equatorial fluorines.

— These fluorines are forced back as the three axial fluorines become aligned to make

overall dipole increased.
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* The individual molecules stack on top of one another in a 0
manner consistent with electrostatic attraction between the N=—NH )J\N - Q

=—NH; H  z Q

non-equivalent faces of the cyclohexane. 43D s3p N 42D S

' 41D
2.4. Energy barrier of flipping Figure 6. Dipole moment of organics
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3. Conclusion Figure 7. Crystal structure

* All-cis 1,2,3,4,5,6-hexafluorocyclohexanae was synthesized.

* The compound has quite larger dipole moment and bipolar aspect.
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