Journal Club 2014.11.27

The Highly Reactive Benzhydryl Cation Isolated and Stabilized in Water Ice

Paolo Costa, Miguel Fernandez-Oliva, Elsa Sanchez-Garcia and Wolfram Sander

J. Am. Chem. Soc., 2014, 136 (44), 15625-15630

1. Introduction

1-1. Carbenium Ion

- One of the most important reactive intermediate
- Only in superacidic condition cation2 is stable for characterization (such as conc. H₂SO₄)
- Proton transfer to a singlet carbene 1 is general rout to cation 2
- The life time scale of cation 2 in general solvent is in order of picosecond

1-2. History of Charactlization of 1 and 2

- Methanol is efficient solvent for protonation of **1** (1963).^a
- Formation of 2 by protonation of 1 was confirmed by picosecond UV-vis absorption spectroscopy (1990).^b
- By femtosecond spectroscopy, in neat methanol, 2 is formed by protonation of singlet-1 (S-1) with a time constant of 9 ps. And 2 is reacted with surrounding methanol with a time constant of 31 ps (2002).^c

1-3. Matrix Isolation Spectroscopy

- Trapping the reactive chemical species with unreactive matrix, such as noble gases.
- The mixture of noble gas and dilute sample are deposited on the windows cooled to below the melting point of the host gas.
- These samples were used in various spectroscopic analyses.

Figure 1. Structure of the matrix isolation machine

Kohei Hashimoto

1-4. Authors' Previous Work^d

- Reaction of **1** with single molecule of methanol in argon matrices doped with 0.5-1% of methanol was investigated by matrix isolation spectroscopy.
- S-1 formed a very strong hydrogen bond with methanol, while T-1 is weak hydrogen bond acceptor.
 Scheme 2. Reaction of 1 and methanol

→ The spin ground state of carbene-methanol complex was shifted to singlet via spin-flip.

- Even in 3 K, this complex reacted to ether via quantum chemical tunneling.
- Expand the scope of solvent-induced spin-flip is necessary.

2. Results and Discussion

2-1. Reaction of 1 with Single Water Molecule

• T-1 is obtained by photolysis of diphenyldiazomethane matrix in argon doped with

0.5-1% water at 3 K and T-1 is obtained by photolysis .

- Then this matrix is annealed at 25 K, S-1 water complex is generated.
- \rightarrow These species are characterized by IR spectrum and UV-vis absorption (Figure 2).
- 1327.8 cm⁻¹

 \rightarrow asym. C-C-C str. vibration of the center (in agreement with DFT

calculation and ¹³C labeling)

 \rightarrow Spin-flip is confirmed also in water

Figure 2. IR spectrum of the reaction between 1 and water

- These findings are corroborated by DFT calculation in gas phase and by QM/MM level of theory in argon matrices.
- In gas phase, the S-T gap of **1** is 3.3 kcal/mol.
- In argon, the S-T gap of **1** is 1.5 kcal/mol.
- \rightarrow Suggest that stabilization by solvation
- The S-T gap of **1**-water complex is inverted, singlet state is more stable than triplet by 1.6 kcal/mol in the gas phase and even by 2.4 kcal/mol in argon(Figure 3).

Figure 3. S-T gap of 1 and 1-water complex

• Complex S-1 – methanol is metastable and at temperature between 3-12 K rearranges with a rate of $5.8 \pm 0.2 \times 10^{-6}$ to 3 (independent of temperature) (Figure 4).

- \rightarrow Indicate tunneling reaction.
- Activation barrier is 16.7 kcal/mol
- \rightarrow Significantly larger than methanol complex.
- In argon, the ion pair 2 and OH⁻ is not obtained nor predicted by calculation.
- \rightarrow More polar medium stabilize this ion pair? \Rightarrow Water matrix.

2-2. Reaction of 1 in Amorphous Water Ice

- What is low density amorphous (LDA) water ice?
- \rightarrow absence of long-range periodic structure
 - · Similar to liquid water formation than crystalline ice
 - Ultraslow reorientation even at temperature of glass-liquid transition
 - At 3 K, this motion is completely frozen.
- Diphenyldiazomethane is sublimed and trap with water at 50 K. Then cooling to 3 K and LDA ice is formed.
 a: DPDM in LDA ice at 8 K is 2 him distinguish 520 mm
- Then photolysis with 530 nm is started and cation 2 was formed, and annealing above 40 K, 2 is disappeared alcohol 3 is formed.
- In this process, singlet carbene S-1 is not detected.
- These reactions are confirmed by UV-vis absorption (Figure 5).

• The IR spectrum of cation **2** in LDA ice nicely matches the calculated gas-phase spectrum of **2** (Figure 6).

- Calculation among cation **2** and surrounding water is carried out.
- \rightarrow No hydrogen bonding is formed.

 \rightarrow The reason why real situation matches in gas-phase calculation.

Figure 6. IR spectrum in LDA ice

Figure 4. Intrinsic reaction coordinate

• Irradiation with 435 nm cause unexpected photochemistry.

→ Disappearance of cation 2 and, generate benzhydryl radical 5. → Expected that photolysis of cation 2 and formed radical 5 with surrounding water molecule. → The bird provides for the 2

 \Rightarrow The high reactivity of cation 2 is remained.

• These results reveale the reaction process between **1** and water molecule (Figure 8).

3. Conclusion

• The author achieve the characterization of reaction intermediate in the reaction between **1** and water by IR and UV-vis spectroscopy and theoretical calculations.

• In argon, **S-1** water complex is stabilized by high polarity and the rate of the tunneling reaction is about 1 order slower in methanol case.

• In LDA ice, cation 2 is entirely stable below 40 K.

• This stabilization is derived from kinetic effect but not thermodynamic effect.

 \rightarrow This LDA method allow us to synthesize and spectroscopically characterize some of unrevealed reactive intermediates.

4. Reference

a. Kirmse, W. Angew. Chem. 1963, 75, 678.

b. Kirmse, W.; Kilian, J.; Steenken, S. J. Am. Chem. Soc. **1990**, 112, 6399.

c. Peon, J.; Polshakov, D.; Kohler, B. J. Am. Chem. Soc. 2002, 124, 6428

d. Costa, P.; Sander, W. Angew. Chem., Int. Ed. 2014, 53, 5122