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1. Introduction 
1-1. Ingenol 
・	 Ingenol (Figure 1), one of the diterpenoid, was 

isolated from Euphorbia ingens in 1968 by Hecker.1 

・	 Ingenol has strained unique C-8/C-10 “in, out” 
   trans intrabridgehead structure of BC ring system. 

・	 Ingenol mebutate [Picato] was approved as  
treatment for actinic keratosis (日光角化症). 

・	 Currently the supply of Picato and is limited to direct isolation (1.1 mg per kg of E. 
peplus)2 and the supply of ingnol is also limited.  

⇒ stable supply of ingenol is required 
1-2. Author’s Motivation 
・	 Many of natural products were currently provided by bioengineering such as plant 

cell culture or collaborations between genetic engineering and chemical synthesis. 

⇒ widely believed bioengineering  
is superior to organic synthesis in terpenoids. 

・	 Biosynthetic pathway of ingenol is largyly unknown 
so engineering biosynthesis faces problem. 

・ Previously, 3 total synthesis were reported. 
⇒ over 37 steps and under 0.1% yield. 

・	 Author presented this case study that chemical  
synthesis is the best way to produce terpenoids  
because of advantage of analog synthesis. 

1-3. Author’s strategy  
・	 Author focused on that biosynthesis of terpenoid 

often occurred “two-phase” process means first 

cyclase and second oxidase phase.３ 
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Figure 1. Structure of ingenol 
and Picato 

Figure 2. Biosynthesis and bioengineering  
of ingenane diterpenoids 
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⇒ author had inspiration from only known key  
intermediate “casben” in biosynthesis and 
extrapolate following cyclizations and generate 
putative “tigliane” skeletons (Figure 2). 

・	 To convert ingenane skeleton, pinacol 
rearrangement was chosen for key reaction. 

⇒ however it was reported that the revers 
reaction is thermodynamically stable４  
⇒ overcome to this problem, previously 
strain epoxide structure enable this rearrangement５ (Scheme 1)  
⇒ optimized temperature and steric hindrance would enable this arrangement  

・	 Cyclase phase was started cheap (+)-3-carene ($ 10.20/mol) as a 
stereochemistry-controlling factor (Figure 3).  

・	  
・	 Scheme 1. Pinacol rearrangement for ingenol analogs5,6 

2. Results and Discussion 
2-1. Synthsis substrate for Pauson-Khand cyclization 

 
Scheme 2. Cyclase phase procedure   
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Figure 3. Retrosynthetic analysis of ingenol 
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・	 2 to 3 (chlorination and ozonolysis): Chlorination proceeded stereoselectively due to 
the steric hindrance of dimethyl cyclopropyl ring. 

・	 3 to 4 (reductive alkylation and aldol reaction): Alkylated intermediate was too 
unstable to isolate, therefore one-pot procedure was selected.  

・	 4 to 5 (nucleophilic addition): Due to steric hindrance of alkyl groups, the reaction 
proceeded stereoselectively (10:1).  

2-2. Key cyclization process 

 
Scheme 3. Synthesis of key intermediate 8 

・	 6 to 7 (Pauson-Khand reaction): By using Pauson-Khand reaction,６ effective ring 
formation was achieved. 

・	 7 to 8 (nucleophilic addition): Due to steric hindrance of TMS group, the reaction 
was proceeded stereoselectively. 

2-3. Oxidase phase 

 
Scheme 4. Oxidase phase procedure  

[RhCl(CO)2]2 
(0.1 equiv)
 CO (1 atm)

p-xylene
140 ºC, 12 h

H
OTBS

TMSOO MeMgBr (4.1 equiv)

THF, –78 ºC to 0 ºC
1 h

H
OTBS

HO

TMSO

7: 72% 8: 80%

• OTBS
HTMSO

6

H
OTBS

HO

TMSO

8

1. OsO4 (1.5 equiv)
pyridine, rt, 12 h

2. Na2SO3
THF, rt, 24 h

H
OTBS

HO
O

O
12: 64% (over 2 steps)

O

TMS

H
OTBS

HO

TMSO

HO
HO

11

CDI (5.0 equiv)
DMAP (0.1 equiv)

DCM, rt, 8 h
O

1 .BF3•Et2O (10 equiv)
DCM, –78 ºC, 2 min
then –50 ºC, 30 min

2. Et3N/MeOH (1:1)
DCM, –40 ºC, 2 min
then NaHCO3, rt

H

O

O
O

OTBS

O 13: 80%

H

1. SeO2 (5.0 equiv)
dioxane, 80 ºC, 14 h

2. Ac2O (25 equiv)
pyridine (50 equiv)
DMAP (0.1 equiv)
dioxane, rt, 45 min

H

O

O
O

OTBS

O

AcO

14: 59%

HF
 (60 equiv)

CH3CN 
50 ºC,10 h

H

O

O
O

OH

O

AcO

15: 90%

1. Martin's sulfurane 
(4.0 equiv)

CHCl3, reflux, 2 h

2. NaOH
THF, rt, 1 h

H

O

HOHO
HO H
16: 81%

SeO2 (10 equiv)

dioxane/HCO2H (2:1)
80 ºC, 2 h

H

O

HOHO
HO OH

1: 76%

CDI=Martin's sulfurane= N N NN

O
F3C

F3C
Ph O

Ph Ph
O

CF3CF3
Ph

20

18



・	 8 to 11 (dihydroxylation): Oxidation by stoichiometric amount of OsO4 promoted 
dihydroxylation chemoselectively due to TMS group and steroselectively due to 
C-20 methyl group. 

・	 12 to 13 (pinacol rearrangement): Crucial low temperature and steric hindrance 
among TMS, TBS, and tight fused rings compare to broad huge ring system 
eventually enable to set the strained “in, out” stereochemistry. 

・	 13 to 14 (allylic oxidation): Due to steric hindrance of C-18 methyl group, SeO2 
lead to allylic oxidation steroselectively. 

・	 14 to 16 (alcohol elimination and global deprotection): Alcohol elimination with 
Martin’s sulfurane and basic hydrolysis with NaOH were smoothly achieved. 

・	 16 to 1 (allylic oxidation): Final installation of OH group was accomplished by 
using SeO2. 

3. Conclusion 
・	 The authors achieved the total synthesis of ingenol in 14 steps and 1.2% overall 

yield through vinylogous pinacol rearrangement. 

・	 This yield compares favorably with natural isolation yield of ingenol or ingenol 
mebutate [Picato]. 

・	 This is good examples that total chemical synthesis holds promise as the best 
method to prepare and develop terpenoid drug molecules because of both yield and 
key intermediate 8 as point of divergence for the analogs. 
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