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1. Introduction 
1-1. Pactamycin 

Ø Pactamycin 1 (Figure 1) was isolated from Streptomyces pactum 

var. pactum in 1961 by Argoudelis et al.1. 

Ø The bioactivity profile of pactamycin is notable; it displays 

antitumor property. 

Ø However, pactamycin’s therapeutic benefits have yet to be 

realized due to its high cytotoxicity. 

➔ Reducing cytotoxicity is necessary for medicinal application. 

Ø Genetic engineering studies have reignited its possibility for 

medicinal application; 7-deoxy– and 8’’-hydroxy–derivatives 

displayed diminished cytotoxicity.2 

➔ An efficient synthesis platform of pactamycin and its derivatives is needed. 

 

1-2. Previous work 

Ø 32-step total synthesis of pactamycin 1 was realized by Hanessian and co-workers (Scheme 1).3 

Scheme 1. 32-step total synthesis of pactamycine by Hanessian and co-workers.

 

Ø Stepwise construction of functional groups. 

➔ It is difficult to apply this methodology to the synthesis of other derivatives. 

➔ A more practical synthesis solution is needed. 
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Figure 1. Pactamycin 1. Four functional 

groups are attached to cyclopentane core. 
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1-3. This work 

Ø 15-step total synthesis of pactamycin was achieved. 

Ø Modular construction (Figure 2); after the formation of 

the cyclopentanone structure (a core skeleton of 

pactamycin), four functional groups were introduced. 

➔ Easily applicable to the synthesis of other derivatives! 

 

 

 

1-4. Author’s strategy 

 
Figure 3. (a) Authors’ choice of starting material. (b) Mannich addition and reduction steps. 

Ø As a starting material for the asymmetric synthesis of pactamycin, authors chose a symmetrical 

α-ureido-2,4-pentanedione 2 as a starting material (Figure 3). 

Ø In the C1–C2 bond construction (Mannich reaction), diastereoselectivity considerations are prevented due 

to the symmetrical methyl ketone substituents at C1 center. 

➔ They could focus on the enantioselective C2–amino incorporation in Mannnich reaction. 

Ø Diastereoselective diketone monoreduction provides the cyclopentane skeleton of Pactamycin. 
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Figure 2. Modular introduction of functionality. 
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Figure 4. A complex formed 

by diketone 2 and catalyst 7. 

2. Results and Discussion 
2-1. Formation of cyclopentanone core structure 

Scheme 2. Formation of cyclopentanone core structure. 

 

Ø 2→4 (intermolecular Mannich reaction): Mannich product 4 was obtained in (R) 

conformation at C-2 (98:2 enantiomeric ratio) because diketone and catalyst 

form complex (Figure 4). 

Ø 4→5 (monoreduction): The monoreduction of diketone proceeded with high 

diastereoselectivity. (1R,2R,7S)-product was selectively obtained, probably 

because of the hydrogen bonding between N and H atoms and steric hindrance. 
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Ø 9→10 (intramolecular aldol reaction): C2 stereocenter was inverted during the cylization to form the 

correct C2 isomer, probably because the formed isomer can be stabilized by the hydrogen bonding between 

N and H atoms. 

Ø 10→11 (nucleophilic epoxidation): Nucleophilic epoxidation proceeded with high diastereoselectivity, 

probably because of the hydrogen bonding between O and H atoms. 

 

2-2. Modular introduction of functionality to complete the synthesis of pactamycin 1 

Scheme 3. Modular introduction of functionality to complete the synthesis of pactamycin 1. 

 
Ø 12→13 (nucleophilic addition): Because of the sterically demanding TBDPS group, Grinard reagent 

attacks from the front side. 

Ø 13→14 (ring opening of epoxide): Because of the sterically demanding TBDPS group, 3-acetylaniline 17 

attacks the less hindered side of epoxide. 

Ø 15→16 (acylation): Only a highly reactive primary alcohol was acylated. 

 

3. Conclusion 
Ø The authors achieved the total synthesis of pactamycin in 15 steps and 1.9% overall yield. 

Ø The modular construction enables the synthesis and investigation of pactamycin derivatives. 
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