$\alpha$ ,  $\beta$ -dehydroisoleucine

NH2

Figure 1.

OH

# Total Synthesis and Complete Structural Assignment of Yaku'amide A

Takefumi Kuranaga, Yusuke Sesoko, Komei Sakata, Naoya Maeda, Atsushi Hayata, and Masayuki Inoue

J. Am. Chem. Soc. 2013, 135, 5467–5474.

### 1. Introduction

## 1-1 Background

- Marine sponges are rich sources of structually unusual and biologically active peptides.
- $\rightarrow$  Yaku'amide A was isolated from the deep-sea sponge *Ceratopsion* sp. by Matsunaga et al.<sup>1</sup>
- Author's motivation: its unique highly unsaturated structure and its cytotoxicity profile.
- $\rightarrow$  This tridecapeptide consists of 2 proteinogenic\* and 11 nonproteinogenic amino acid residues and is capped with a *N*-terminal acyl group (NTA) and a C-terminal amine (CTA).
  - \* Proteinogenic amino acids are precursors to proteins.
- $\rightarrow$  It exhibited extremely potent cytotoxicity and growth inhibitory profile against a panel of 39 human cancer cell lines (JFCR39) that include various human cancers.

### 1-2 Challenges

• <u>Challenge</u>: The stereoselective synthesis of *E*- and *Z*- $\alpha$ ,  $\beta$ - dehydroisoleucine moieties

 $\ldots \alpha, \beta$ -unsaturated amino acids (**1**, **2**, **3**, and **4**)

<u>Previous reports</u>:  $\times$  a mixture of *E*- and *Z*-isomers (Shin et al)<sup>2</sup>

- $\times$  harsh conditions, highly toxic reagents (Wandless et al, Joullie et al)<sup>2</sup>
- The absolute configuration at C4 of the *N*-terminal acyl group (NTA) was not elucidated.

### 1-3 Ideas of This Work

Enabler: Cu-catalyzed cross coupling reactions for *E/Z* selective synthesis

Scheme 1. Structure of Yaku'amide A (1a and 1b) and synthetic strategies



To determine the absolute C4-stereochemistry, they planned to construct two possible C4 isomers and then compare them with the natural **1**.

### 2. Results and Discussion

## 2-1 Synthesis of **1**, **2**, and **3**

## 2-1-1 Stereoselective synthesis of *E*- and *Z*-alkenyl iodide monomers (Scheme2)

 $\rightarrow$  A conjugate addition of lithium dialkylcuprate and in situ trapping with iodine delivered *E*/*Z*-olefin.

 $\rightarrow$  Reduction with DIBALH and protection with TBDPS group furnished *E*/*Z*-alkenyl iodide.

\*The geometries of the double bonds of products were confirmed by nuclear Overhauser effect (NOE).



## 2-1-2 Mild Cu-catalyzed cross-coupling methods for synthesis of **1**, **2**, and **3**

- <u>Enabler</u>: Buchwald reagent system [CuI, N, N'-dimethylethylenediamine,  $Cs_2CO_3$ ]<sup>3</sup>
- $\rightarrow$  Cu catalyst and Cs<sub>2</sub>CO<sub>3</sub> promoted stereoselective substitution of iodine of Z-alkenyl iodide, producing the corresponding Z-enamides.

## Scheme 3. Stereoselective synthesis of E- and Z-dehydroisoleucine moieties



# 2-2 Synthesis of **4**

# Scheme 4. Synthesis of C-terminal tetrapeptide



Scheme 2.

### 2-3 Synthesis of NTA (N-terminal acyl group)

- The C4-stereochemistries of S/R-isomers were installed using the Evans asymmetric aldol reaction.
- $\rightarrow$  Mild conditions eliminated the risk of C4-epimerization and C1-decarboxylation

#### Scheme 5. Synthesis of two enantiomeric NTAs



#### 2-4 Total synthesis of Yaku'amide A

- <u>Challenge</u>: isomerization of Z-dehydroisoleucine acid during amidation.
- $\rightarrow$  They prevented the isomerization by protecting the secondary amide with a Boc group (Scheme 6).

# Scheme 6. Model study for isomerization-free amidation of $\alpha$ , $\beta$ -dehydroisoleucine



Finally, multiple amide bond formations completed the total synthesis (Scheme 7).

 $\rightarrow$  They synthesized the target molecule, Yaku'amide A, through repeating the seven Boc-removal/condensation procedures from **4** (Scheme 7).

### Scheme 7. Total synthesis of two possible isomers of yaku'amide A



munus



#### 3. Stereochemistry and Biotoxicity

- The complete structure of Yaku'amide A was confirmed as 1a by NMR analysis.
- $\rightarrow$  Possessed the C4-S-stereochemistry of 1a
- Preliminary toxicity study using mouse leukemia P388 cells
- $\rightarrow$  Both **1a** and **1b** displayed similar IC<sub>50</sub> values.

(cf) IC<sub>50</sub> value of 1a: 24 nM, 1b: 83 nM, natural product: 46 nM

 $\rightarrow$  The effect of the C4-stereocenters on the potent toxicity of 1 was small.

### 4. Conclusion

- First total synthesis of Yaku'amide A was accomplished.
- Determination of the complete stereochemical structure of yaku'amide A to be **1a** with the C4 S-stereochemistry.
- Discover the relationship between stereochemistry of C4 and cytotoxicity.

#### 5. References

- (1) Ueoka, R.; Ise, Y.; Ohtsuka, S.; Okada, S.; Yamori, T.; Matsunaga, S. J. Am. Chem. Soc. 2010, 132, 17692-17694.
- (2) (a) Nakamura, Y.; Ito, A.; Shin, C. *Bull. Chem. Soc. Jpn.* **1994**, *67*, 2151, (b) Stohlmeyer, M. M.; Tanaka, H.; Wandless, T. J. J. Am. Chem. Soc. **1999**, *121*, 6100, (c) Shangguan, N.; Joullie, M. *Tetrahedron Lett.* **2009**, *50*, 6748.
- (3) (a) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421, (b) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.