Takumi Yoshida

N = C - AuC₆F₅

Mechanical stimulation and solid seeding trigger single-crystal-to-singlecrystal molecular domino transformations

Ito, H.; Muromoto, M.; Kurenuma, S.; Ishizaka, S.; Kitamura, B.; Sato, H.; Seki, T. Nature. Communications. DOI: 10.1038/ncomms3009

1. Introduction

1.1 Single-crystal-to-single-crystal (SCSC) transformations

• Recently, functional materials that can be manipulated by external perturbations (heat, light, pressure, or guest molecules) are attracting interest for their potential utility as switches and sensors.

\rightarrow To understand the origin of transformations is necessary.

• Especially, single-crystal-to-single-crystal (SCSC) transformations of functional materials induced by external perturbations are desirable because single-crystal X-ray diffraction analysis provides a molecular-level understanding of the phase transformations.

1.2 Previous work by authors¹ : Mechanical stimulus triggered transformation

C_EF_EAu-C=N

- Mechanical stimulus (shearing, ballmilling or grinding) is one of the external perturbations that can alter the solid structure of the molecular crystals.
- They previously found that Au complex showed reversible mechanochromism induced by mechanical stimulus (Figure 1)
- After the mechanical stimulus (i.e. scratched with a spatula), strong

• Treatment with dichloromethane leads to the original crystal (yellow \rightarrow blue).

X They cannot analyze the resulting crystal after mechanical stimulus by singlecrystal XRD analysis.

 Mechanical stimulus also induces crystal collapse, making them unsuitable for single-crystal X-ray analysis.

\rightarrow Difficult to understand the mechanism of transformation induced by mechanical stimulus.

Figure 1. Structure of Au complex and photograph of mechanochromism

1.3 This work

Two novel points

• The first observation of the SCSC transformation induced by mechanical stimulus.

→ Mechanistic Consideration

• The phase change first occurred at the initial contact area and subsequently progressed throughout the entire crystal.

→ Behave as "molecular dominoes"

2. Results and Discussion

2.1 Synthesis of Au Complex

- Au Complex **1** can be easily prepared (*figure* **2**).
- Rapid crystallization and slow crystallization from hexane/ CH_2Cl_2 produced crystals of **1** in the I_b phase and II_v phase.

2.2 Properties of I_b and II_y

- I_b showed blue photoluminescence
- II_y exhibited strong yellow photoluminescence (*figure 3*)
- X-ray analysis, elemental analysis, TG analysis and NMR measurement indicated that there was no solvent inclusion in the crystals.
- The crystal structures were confirmed by the single-crystal XRD analysis of each single crystals (*figure 4*)
- The big difference is the distance between the Au atoms.

Figure 2. Preparation of Au complex

Figure 4. Crystal structure of I_b and II_y

2.3 Mechanical stimulus for I_b

• 3-min ball-milling of I_b afforded the powder $II_{y(ground Ib)}$. It was identical to II_y in terms of its photoluminescence and XRD pattern.

 \rightarrow These results indicate that the ball-milling process induced direct crystal-to-crystal transformation of $I_{\rm b}$ to $II_{\rm y}$

- •Small pit was formed by using needle (*Figure 5*).
- Subsequently, the domain exhibiting yellow emission gradually increased to nearly the entire crystal after 9 h.
- The transformation was also triggered by contacting a seed crystal of II_y with a crystal of I_b (*figure 6*).
- The rate of conversion was highly variable.
- After the transformation, they got II_{yscsc} and single crystal X-ray analysis was performed.

 \rightarrow The structure was identical to II_v

Figure 5. Photograph of SCSC transformation induced by mechanical stimulus

Figure 7. Crystal structure of II_{yscsc}

Figure 6. Photograph of Solid-Seeding SCSC transformation

2.4 Mechanism of SCSC transformation

• They considered the key of SCSC transformation is aurophilic interactions.

• Aurophilic interactions were generated within 3.5 \AA^2

 \rightarrow It means that no aurophilic interactions in crystal I_b and existing aurophilic interactions in crystal II_y .

- The result of DFT calculation shows that II_y shows shorter HOMO-LUMO gap compared to I_b (*figure 7*). This result is identical to red-shift emission spectrum.
- The less stable crystal I_b crystalizes first and more stable crystal II_y crystalizes from later (*figure 8*).

Figure 8. Diagram of the thermodynamic energies for I_b and II_y Figure 7. The result of DFT calculation

3. Conclusion

- First observation and single-crystal XRD analysis of SCSC transformation by mechanical stimulus.
- A mechanical stimulus triggers a state change in the entire assembly.
- \rightarrow It will be applied to highly sensitive detection of mechanical stimulation

4. Perspective

- Lack of reversibility (dissolution and recrystallization are necessary)
- \rightarrow Reversibility is suitable considering for the application
- We cannot design the complex to achieve this SCSC transformation.
- \rightarrow Only screening complexes

5. References

- 1) Ito, H.; Sato, T.; Oshima, N.; Kitamura, N.; Ishizaka, S.; Hinatsu, N.; Wakeshima, M.; Kato, M.; Tsuge, K.; Sawamura, M. *J. Am. Chem. Soc.* **2008**, *130*, 10044–10045.
- 2) Schmidhaur, H.; Schier, A. Chem. Soc. Rev. 2008, 37, 1931–1951.