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1. Introduction 

1.1. Haouamines 

• Haouamines (Figure 1) are alkaloids from Aplidium 

haouarianum, which display cytotoxic effects.1 

• The Baran group reported the total synthesis of haouamine 

A, and its structure was firmly secured.2 

• In contrast, only the synthesis of the core of the molecule 

was reported for haouamine B.3 

• The structure of haouamine B was assigned from nature-

derived haouamine B peracetate.1 

• Its isomerization through nitrogen inversion, coupled with a conformational reorganization, leads to 

the complexity of the NMR spectra. 

 

1.2. This Work 

• First total synthesis of the structure assigned to haouamine B (2) was reported. 

• The structure of haouamine B was reassigned through the disagreement of spectral data. 

 

1.3. Strategy 

• For haouamine A, the total synthesis 

was achieved via late-aromatization 

step to form the p-cyclophane 

macrocycle (Scheme 1).2 

• The biosynthesis route of this 

macrocycle is unknown yet.4 

• The authors proposed a o,p-phenol oxidative radical coupling as a biosynthetic way to construct this 

macrocycle (Scheme 2). 

 
Scheme 2. Mechanism of the proposed oxidative phenol coupling toward p-cyclophane moiety. 
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Figure 1. The haouamines. 
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Scheme 1. Reported synthesis of the p-cyclophane moiety of 
haouamine A (1).2 
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2. Results and Discussion 

2.1. Synthesis of the indeno-tetrahydropyridine core of Haouamine B 

 The indeno-tetrahydropyridine core 17 was synthesized (Scheme 3). 

 
Scheme 3. Synthesis of indeno-tetrahydropyridine core 17. 

	    
 

• The synthesis was started from N-Boc-L-serine. 

• Through the Friedel-Crafts triflation of 16, the core was afforded without loss of optical purity. 

 

 

2.2. Oxidative Phenol Coupling towards p-cyclophane macrocycle 

 To focus on the oxidative phenol coupling, amine 18, bisphenol 19, amide 20 were prepared from 17 

(Scheme 4) as a substrate. 

• Biomimetic oxidative conditions 

(horseradish peroxidase/H2O2) did 

not gave any identifiable products. 

• Neither the electrochemical 

oxidation nor the use of chemical 

oxidants gave useful outcomes. 

• Heating with radical initiator 

resulted in complete recovery of 

starting material. 

 

The authors suggest that: 

• Oxidative phenol coupling might not proceed without enzymatic assistance. 

• The formation of this p-cyclophane macrocycle might take place before the formation of indeno-

tetrahydropyridine core. 
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Scheme 4. Oxidative phenol couplings of substrates 18, 19, 20. 
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2.3. Total synthesis of the proposed structre of haouamine B 

 To form this p-cyclophane moiety, a late-stage aromatization strategy, which was pioneered by 

Baran,2 was adapted. 

Ø Total synthesis of compound 2 was achieved (Scheme 5). 

 
Scheme 5. Total synthesis of the proposed structure of haouamine B (2) and its peracetate (37). 

   	  	    

 

• The stereocenter of 28 allows single biaryl atropisomer of 34. 

• Peracetate of 2 (37) was finally obtained and its structure was ensured by spectral and physical data. 

 

 

2.4. Structural Reassignment of Haouamine B 

 The spectral data of 37 did not fully match those reported for nature-derived haouamine B peracetate 

(Figure 2).1 

• In the originally published data, signals of H-20 

and H-22 were overlapped with other signals at 

δ 7.08 (obtained at 400 MHz). 

• For compound 37, two meta-coupled protons 

could be clearly observed at δ 6.83 and 6.76. 

Ø Structure of haouamine B needed to be 

revised.  
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its major isomer. 
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For detailed analysis, NMR spectra of the nature-derived haouamine B were recorded at 600 MHz. 

• The two protons on ring A of the major isomer were still overlapped; those of the minor isomer were 

resolved enough to two ortho-coupled signals at δ 7.25 and 7.27. 

• From the HMBC spectrum, the proton at δH 7.25 showed correlations with carbons C-18 and C-24, 

while the proton at δH 7.27 showed with C-19 and C-23. 

Ø These protons are located in position 20 and 21 (Figure 3). 

Ø The molecular structure of this compound must be reassigned to 38 (Figure 3). 

 

The structure of the natural product haouamine B should be revised from 2 to 39 (Figure 3). 

 

 	    
Figure 3. Revised structure of haouamine B peracetate (38) and haouamine B (39). NMR signals of 38 are of its minor isomer. 
 

 

3. Conclusions 

• Concise total synthesis of the structure originally assigned to haouamine B was developed. 

• Through the re-examination in the nature-derived haouamine B peracetate, the structure of 

haouamine B was reassigned to 39. 
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