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1. Introduction 
1.1 Toward green sustainable chemistry 

Goal: Convert basic compounds into useful products in a sustainable fashion 
For example… –Using more clean and cheap energy source 

 –Reuse catalyst to decrease the waste and cost 
 

1.2 Photoredox catalysts with organocatalysts 
• Recently, combination of organometallic complexes such as [Ru(bpy)3]2+, 

[Ir(ppy)2(dtbpy)]+ and organocatalysts are intensively investigated as an asynmmetric 
photoredox catalysts (scheme 1).1 

  Sunlight can be used as an inexhaustible light source ideally. 
 
Scheme 1. Photoredox catalyst with an organocatalyst 

 
 
1.3 Metal–organic frameworks (MOFs)2 
• MOFs are hybrid solids with infinite 
network structures built from organic ligands 
and metals. 
• It can tune the size and the shape of pore. 
  Used for gas storage, molecular sensing, 
separation, medical applications and heterogeneous (asymmetric) catalysts. 
• MOFs can be reused for heterogeneous (asymmetric) catalyst. 
 
1.4 This work 

Incorporation of an asymmetric organocatalyst within a photoactive MOF 
For constructing reusable photocatalytic systems 

 
Strategy for this work 
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Figure 2. (a) CD spectrum of Zn-BCIP1 and 2 
(b) CD spectrum of Zn-PYI1 and 2 (c) CD 
spectrum of L-BCIP and D-BCIP (d) UV 
spectrum of Zn-BCIP1 and Zn-PYI1
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Figure 1. Crystal structure of Zn-BCIP1

O

• Synthesizing MOF with photocatalyst, metal salt and asymmetric organocatalyst. 
• They also synthesized MOF with only photocatalyst and metal salt to confirm 

installation of organocatalyst within a single MOF is crucial for enantioselectivity. 
 
2. Results and Discussion 
2.1 Synthesizing MOF (Zn-PYI1 and Zn-PYI2) 

 
 

• Zn-BCIP1 and Zn-BCIP2 can be easily synthesized. 
Determined by elemental analysis and X-ray  
analysis (figure 1). 
• Thermogravimetric analysis (TGA) of Zn-BCIP1 
exhibited a significant weight loss of 12.9% in the 
100–200 °C. 
Boc group can be deprotected in 100–200 °C.              
• The expulsion of the Boc group was further verified                  
by 1H NMR, IR and elemental analysis.  
 
2.2 Nature of ZnPYI1 
 
– Dye-uptake study  
1. Soaking Zn-PYI1 and Zn-BCIP1 in a  
Fluorescein (2’,7’-dichlorofluorescein) 
2. Washing with solvent several times 
3. Digesting fluorescein with sodium  
ethylenediaminetetraacetic acid 
4. Quantified by UV the amounts of  
released fluorescein   
• 14% of the framework weight of fluorescein was  
absorbed for Zn-PYI1, but fluorescein was not  
absorbed for Zn-BCIP1. 
 These results implied the releasing of channels  
during deprotection process. 
 
– Circular dichroism (CD) spectrum 
• Zn-BCIP1 and Zn-PYI1 showed cotton effect in  
each wavelength (figure 2, (a) and (b)). 
• The peak around 340 nm was assignable to the absorbance corresponding to the π-π* 

transition of the triphenylamine groups. 
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Figure 3.  (a) Solid-state CV of Zn–BCIP1 and  Zn–PYI1 
with a scan rate of 50 mV s-1 in the scan range 0.5–1.1 V. 
(b) Normalized absorption (black line) and emission 
spectra (red line) of Zn–PYI1, excited at 350 nm.

Figure 4. (a) Solid-state emission spectra of Zn–PYI1 (black 
line), Zn–PYI1 upon absorbance of phenylpropylaldehyde 
(blue line) and diethyl 2-bromomalonate (red line), excited 
at 350 nm. (b) Transient emission spectra of solid Zn–PYI1 
and Zn–PYI1 with diethyl 2-bromomalonate incorporated.

– Redox potential of MOF 
• The redox potential of the 
Zn–PYI1+/Zn–PYI1* couple was –2.12 V  
(figure 3). 
 This potential was more negative than 
that of the diethyl 2-bromomalonate 
(E0 = –0.49 V). 
 
2.3 Absorption experiment (figure 4). 
• The luminescence intensity of Zn-PYI1 
was significantly reduced when it absorbed 
diethyl 2-bromomalonate molecules 
(figure 4, (a)). 
• Decrease of fluorescence lifetime of 
Zn-PYI1 absorbed diethyl 2-bromomalonate 
molecules was observed (figure 4, (b)). 
  The quenching process was attributed to  
the photoinduced electron process from  
Zn-PYI1* to diethyl 2-bromomalonate.  
 
2.4 Photocatalytic α-alkylation of Aliphatic Aldehydes 
 

 
• Zn-PYI1 and Zn-PYI2 gave corresponding desired product in good yields with good 

ee values (in parentheses) 
• When compound 1 whose size is larger than the pore size of Zn-PYI1 was used, the 

desired reaction only gave the desired product in 7% yield. 
 The desired reaction took place mostly in the channel of the catalyst. 
 
Control experiment for Zn-PYI1 
• Reaction did not occur in the absence of fluorescent lamp. 
• Zn–BCIP1 instead of Zn-PYI1 did not afford the desired product. 
• The removal of Zn-PYI1 by filtration shut off the reaction. 
• Zn-PYI1 can be isolated by filtration and can be reused at least three times. 
• Zn-PYI1 maintained the framework after the reaction. 
 Confirmed by dye uptake study. 
 
• Confirmation of heterogeneous and photocatalytic nature of the reactions. 
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2.5 Control Experiment 
• To investigate the effect of combination of photocatalyst and organocatalyst within a 

single MOF, they synthesized Ho-based MOF. 

 
 
• Confirmed by elemental analysis and X-ray analysis. 
• Dye-uptake studies showed a 23% uptake of fluorescein. 
• Redox potential of the (Ho–TCA+/Ho–TCA*) is –2.20 V. This is more negative than 

that of Zn-PYI1. 
 It is enough for photocatalytic reaction. 
 

 
 

• The yield of the desired product is higher than that of Zn–PYI1 and Zn–PYI2. 
• ee values (in parentheses) dramatically got worse. 
This result suggests that incorporation of organocatalyst and photocatalyst within 
single MOF is effective for high enantioselectivity. 
 
3. Conclusion 
• MOF-based asymmetric photocatalyst through the cooperative combination of 

triphenylamine photocatalysis and proline-based asymmetric organocatalysis within a 
single MOF was developed. 

• Control experiment showed that integration of photocatalyst and asymmetric 
organocatalyst into a single MOF is superior in the view of enantioselectivity. 
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