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1. Introduction 
1.1. Self-assembly processes under kinetic control 
• Self-assembly has been used for preparation of 
functional materials; films, fibers, etc. 

• Quantitative study has not been investigated 
sufficiently. Especially elucidation of 
mechanism by studying self-assembly process 
under kinetic control is necessary. 
 

1.2. Previous work  

• S-chiral oligo(p-phenylenevinylene) (SOPV) 
serves as a functional material in a variety of 
organic electronic devices (ref. 1). 

• Formation of one-dimensional right-handed 
helical structure, M-SOPV from 
hydrogen-bonded dimers of SOPV under 
thermodynamic control (Fig. 1, ref. 2) was 
demonstrated. 
 
1.3. This work (Fig. 2) 
• Self-assembly process of SOPV under kinetic control was studied. 

• It was discovered that left-handed P-SOPV can form under kinetic control.  

• The revealed self-assembly process includes two pathways; on-pathway and off-pathway, which 
generate M-SOPV and P-SOPV respectively. 

• This work is composed of (i) observation of the self-assembly process under kinetic control, (ii) 
mechanistic analysis by modeling, and (iii) selective generation of the metastable structure, P-SOPV.  
 
2. Results and Discussion 
2.1. Preparation and characterization of SOPV aggregates formed 
under kinetic control 
• A supramolecular structure under kinetic control was 
prepared by “stopped-flow experiments”(Scheme 1). 

 

• The quick mixing of SOPV solution in chloroform with a poor solvent, methylcyclohexane (MCH) 
afforded a mixture of M-SOPV and P-SOPV. 
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Figure 1. Molecular structure and hydrogen-bonded dimerization of SOPV.
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Figure 2. Schematic representation  of the  aggregation pathway of SOPV.
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Figure 3.  CD spectra of thermodynamically stale M-
SOPV and mixture of M-SOPV and metastable P-SOPV.
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➜ Observation of P-SOPV by CD spectra (Fig. 3) 

• To study the aggregation kinetics after the mixing, time-resolved CD spectra were measured. 

• Influence of concentration and temperature on time change of CD spectra was studied (Fig. 4). 

 
 
• Fig. 4A indicate increase of thermodynamically stable M-SOPV as the time advances.  
However, the situation was different at the initial stage (Fig. 4C).  
– A positive CD signal at higher concentrations suggests formation of P-SOPV. 
– The tendency was also observed under the heated condition (Fig. 4B,E).) 

• For further analysis, time parameter “t–50” at which 50% of the aggregation process completes 
(illustrated in Fig. 4B) was determined. Small t–50 means fast formation of thermodynamically 
stable M-SOPV.  

• A unique tendency was observed: 
– At 293 K, M-SOPV formed faster (that is, smaller 

t–50) at 10 µM than at 15 µM (Fig. 4D).  
– The shortest t–50 time shifts to a higher 

SOPVconcentration (10 µM at 293 K ➜ 20 µM at 
306 K). 

➜ Mechanistic study was carried out by simulation. 
 
 2.2. Rationalization of the experimental aggregation 
kinetics 
• The mechanism was studied based on protein 
fibrillation models (Fig. 5, ref. 3). 

• The model considers two aggregation pathways; 
on-pathway leading to thermodynamically stable 
aggregates and off-pathway leading to kinetically stable aggregates. 

• The model only assumes monomer association and dissociation for size change of aggregates. 
Therefore the transition from metastable to thermodynamically stable aggregates was assumed to 
occur via depolymeriation of P-SOPV and subsequent growth of M-SOPV. 
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Figure 4. Concentration-dependent kinetics analyzed by CD spectra (! = 466 nm) (A) at 293 K (B) at 
308 K(C) Zoom in for panel A. (D)  t–50 vs. concentration at 293 K and 308K. (E) Zoom in for panel  B.
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Figure 5. Schematic representation of reversible kinetic model for 
nucleated supramolecular polymerization. X1: Hydrogen-bonded dimer, 
Pn, Mn: P-/M-type aggregates with aggregation number of n.
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[Results of the simulation] 
• Simulation with the model showed that 
the P-SOPV aggregates only appear in the 
initial stages of the self-assembly process 
if sufficient monomers are present. 

– When !∗ > !, the kinetic model 
successfully described the 
experimental data (Fig. 6A). 

– Calculated Gibbs free energy (Fig. 6B) 
revealed that the P-SOPV nucleus is thermodynamically more stable than the M-SOPV nucleus 
(that is, !!∗ > !!), while M-SOPV is more stable in the elongation phase. 

• The changes in the t – 50 values with concentration could be rationalized by taking off-pathway 
into account (Fig. 7A, B).  

 
– At higher concentrations, larger amount of P-type nuclei are formed.  
– P-type nuclei consume monomers, inhibiting the formation of the 

thermodynamically stable M-type aggregates.  
– Simulations exploring the effect of temperature showed that the aggregation 

rate gets faster upon increasing the temperature (thus, lower t – 50) (Fig. 7C).  
➜ Correspondence to the experimental results (cf. Fig. 4D) 

2.3. Direction of assembly of SOPV toward metastable products 
• Based on the mechanism, they attempted to force the assembly of SOPV 
into exclusively P-type aggregates. 
• Previous studies have shown that carboxylic acid groups can bind to 
OPV dimers via hydrogen bonding (ref. 4). 
• When DTA, a chiral dicarboxylic acid was added to SOPV, a P-type 
helical aggregate (P-DTA-SOPV) generated selectively (Scheme 2). 
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Figure 7. Description of the aggregation process by taking off-pathway aggregation in account. (A) Concentration-
dependent simulation of kinetics with pathway competition model. (B) t-50 vs. SOPV dimer concentration obtained from 
simulation.(C) Temperature-dependent sumu-lations with pathway copetition model.
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Scheme 2. Stabilizaition of P-type helical aggregate by addition of DTA
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Figure 6. Results of calculation based on the kinetic model. (A) Change of CD spectra 
matches with the experimental data when a* > a. (B) Calculated Gibbs free energy 
diagram indicating Kn* > Kn.
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• The opposite helicity of P-DTA-SOPV compared to 
equilibrium conditions (M-SOPV) was demonstrated by the 
opposite CD spectrum (Fig. 8).  
• Pure P-SOPV was obtained by “two-step non-covalent 
synthetic methodology”(Fig. 9A)  
– STEP 1) Formation of P-DTA-SOPV 
– STEP 2) Removal of DTA from the SOPV aggregates by 

aqueous extraction at 273 K using ethyl diamine 
➜ Transiently stable P-SOPV was formed. 
• In addition, the kinetic lability of P-SOPV is demonstrated by 
annealing at 298 K, resulting in a time-dependent 
stereomutation of the CD spectra indicative of a conversion from P-SOPV towards M-SOPV 
aggregates (Fig. 9B).  
 

 
 
3. Conclusion 
• The aggregation of SOPV involves two competing pathways leading to 
assemblies with opposite helicity, one of which is favored kinetically 
(P-SOPV) and the other thermodynamically (M-SOPV). 

• This work reveals that the influence of the metastable state on the overall 
assembly process is mediated through the equilibrium with free monomers. 

• The effect is a common mechanism for one-dimensional supramolecular 
systems, and would be applicable to almost all organic materials. 

• By influencing the self-assembly process through tuning of the on-pathway 
or off-pathway mechanisms, the resulting morphologies could potentially be 
controlled to arrive at optimized self-assembled functional materials. 
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Figure 9. Preparation of pure P-SOPV via a two-step non-covalent synthetic methodology. (A) Schematic repre-sentation of the procedure. 
(B) Change of CD spectra upon conversion from P-SOPV to M-SOPV upon annealing.
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Figure 8. CD spectra of M-SOPV, P-DTA-
SOPV, and P-SOPV.


