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1. Introduction 

 • Suzuki-Miyaura (SM) cross-coupling reaction is one 
of the most important reactions in organic chemistry. 
 • Protecting groups for boronic acids, such as 
trifluoroborates and MIDA boronates, have been 
developed (Figure 1).1 Organotrifluoroborate (RBF3K) 
reagents are easily prepared, air-stable and easy to 
handle.	
   
  • The in situ slow-release of ArB(OH)2 (2) and 
fluoride from the ArBF3K reagent (1) reduces the side 
reactions (homocoupling, oxidation, 
protodeboronation) observed when aryl boronic acid is 
directly used (Scheme 1).2 
Problem: solvolysis of RBF3K is rather complex, 
making the “slow-release” strategy not viable in some 
cases. 
 
This Work: factors that affect the hydrolysis of RBF3K reagents were investigated. Analysis of the 
B–F bond allows a priori evaluation whether RBF3K will engender a “slow-” or “fast-release”.  
 
2. Results and Discussion 

2.1. Hydrolysis Mechanism of Aryltrifluoroborate 1a (R = p-F-C6H4) (Environmental Factor) 
2.1.1. Hydrolitic Equilibrium and Effect of Glass (Reaction Vessel) 

•  The shape and size of the glass reaction vessel showed 
large effect in the hydrolytic half-life t1/2 of 1a under SM-
coupling conditions (Figure 2).  The question is WHY? 
• [10B]-1a and [2H4]-2a under standard SM-coupling 
conditions do not undergo Ar/B exchange (Scheme 2a).  
    => F/OH ligand-exchange via intermediates 3a–5a 
should allow the equilibrium between 1a and 2a.  
    => Fluoride sequestration ultimately drives the 
equilibrium to the side of 2a (Scheme 2b). 
• Glass acting as a fluorophile can explain the effect of the 
reaction vessel. 
• Investigation of hydrolysis of 1a was carried out in a 
PTFE tube. Without glass or base, the reaction reached a hydrolytic pre-equilibrium. On addition of 
glass powder, the hydrolysis proceeded with simple pseudo-first-order kinetics, at a rate that was 
directly proportional to the glass surface-area (Figure 3).  
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Figure 1. Chemical structures of boronic acid and derivatives.
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Figure 2.  (a) Hydrolytic half-life of 1a (8 mM) to 2a in 
reaction vessels A-G; magnetic stirring rate 500 rpm unless 
noted. Determined by 19F NMR.
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2.1.2 Effect of Base: THF/Water Phase-Splitting and pH 
 • Inorganic bases induce a phase-splitting of water in the homogeneous THF/water medium, 
although the system may present the visual aspect of a homogeneous medium.  
=> Under SM coupling conditions, the majority of the base is present in the minor aqueous phase 
(pH ≥ 12) rather than in the bulk THF/H2O phase (pH ≈ 9) (Figure 3a). 
 • In a pH single-phase basic medium, 
the boronic acid is predominantly 
present as ArB(OH)3

–. In contrast, a 
biphasic system maintains a relatively 
lower pH in the organic phase, 
ensuring that a higher proportion of 
ArB(OH)2, the active transmetalating 
agent,3 is present while facilitating the 
generation of the key complex R-Pd-
OH (Figure 3b). 
=> in situ generation of a biphasic 
medium is benefic to the reaction. 
• Although a base or glass (“HF-sink”), 
is required to drive the hydrolysis to 
completion, base in the medium 
strongly retards hydrolysis (Figures 3c 
and 3d).  
=> hydrolysis of 1a should proceed by 
an acid-catalyzed hydrolytic equilibrium (acid-base paradox). 
Conclusion in Section 1a: under the basic THF/H2O conditions, the base-mediated suppression of 
solvolysis of 1a counts for the variability in the induction period and solvolytic decay. pH buffering 
ability of the bulk phase depends on three processes:  

(i) the rate of hydrolytic equilibrium of 1a, to liberate HF/KHF2               <= depends on R 
(ii) the rate of sequestration of the HF/KHF2       <= depends on vessel and base 
(iii) the interfacial transfer rate of hydroxide or carbonate from the strongly basic minor 

biphase into the bulk medium (the major biphase)  <= depends on mixing efficiency 
 (ii) and (iii) => Reaction environment is an important factor! 
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Examples 
1) Mixing: inefficient mixing 
may result in etching of the 
vessel glass by HF, KHF2. 
2) Reaction vessel shape: a 
cone-shaped base vessel 
resulted in poor phase contact 
of the bulk solvent with the 
basic minor split phase, 
resulting in faster hydrolysis 
and higher amount of homo-
coupling product when 
compared to a hemispherical 
base vessel (Scheme 3a). 
3) Chemoselective Cross-Coupling: Highly efficient phase contact can be produced by sonication. 
Under pulse sonication conditions, the boronic acid-derived cross-coupling product was generated 
with high selectivity (Scheme 3b). 
 
2.2. Hydrolysis of 1b–s (R Factor) 

2.2.1.  Hydrolytic Equilibrium in 1a–i and Base-Mediated Hydrolysis of 1a–s 

•  Range of kobs in glass- or base-mediated hydrolysis of 1a–s was very large (> 105). 
• Rationalization of the trend:  
- slow hydrolysis: stabilization of RBF3K form by the s-character of C at the B–C bond, e.g, 1e      
- fast hydrolysis: stabilization of RB(OH)2 form by π-donation (1c,1d) or hyperconjugation (1g) 
=> B–F bond length, an indicator of the ability of R to donate into the vacant p-orbital on B, should 
correlate with the hydrolysis (kobs) of RBF3K. 
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• The calculated Δr(B–F) (variation of B–F bond length from BF3 to RBF2, calculated by DFT) 
correlated well with the experimentally determined hydrolytic equilibrium (x2) for 1a–i (Figure 5a). 

• Under SM-coupling conditions, the prediction of the 
hydrolysis rate became much more complex. Glass-
mediated hydrolyses correlated well with Δr(B–F) 
above 1.5 pm (Figure 5b). Under basic conditions, 
log10kobs

base correlated with Δr(B–F), with 
differentiation whether R is sp2 or sp3. 
• The large range of kobs was explained by the 
existence of two pathways for hydrolysis. If Δr(B–F) 
is below approximately 1.75 pm, the R group is 
insufficiently stabilizing in 3 to facilitate hydrolysis 

through direct dissociation pathway (ii). Instead, the acid-catalyzed pathway (i) is dominant, 
resulting in strong rate suppression on addition of base (Scheme 4).  
• Outlier 1c: R is hydrophilic enough so that the ionic RBF3K reagent partitions into the aqueous 
minor biphase via pathway iii. 
• However, a more general function than Δr(B–F) should be applied for better application. Can the 
R group be treated as if it were a substituent on an aromatic ring (R-BF2 ≈ R-CAr)? 
• Swain-Lupton resonance parameter (extension of Hammett equation) (Equation 1) correlated well 
to Δr(B–F) , and thus to kobs

glass (Figure 5c). 
 

RSL = 1.355σp – 1.19σm – 0.03 (Equation 1) 
 
=> Based on these results, trifluoroborates were classified in three groups according to R (Table 
1).  

 
 
3. Conclusion 

• Kinetics of hydrolysis of RBF3K (1) to RB(OH)2 (2) was investigated in the presence and absence 
of base and glass in PTFE vessels for their application in Suzuki-Miyaura coupling. 
• Reactions were found to proceed via acid catalysis or direct dissociation of KF.  
• Hydrolysis rates (kobs) correlated well with Δr(B–F) and RSL. A priori evaluation can be made to 
determine whether an RBF3K will undergo fast or slow hydrolysis. 
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class R t0.5 misc

I alkyl, cycloalkyl, electron 
rich-aryl, alkenyl

< 1 h
(fast hydrolysis)

pathway

ii
(direct dissociation)

Release of boronic acid is faster than its consumption. 
Advantage is high stability of trifluoro boronate.

II simple aryl, benzyl, furyl 1 h < t0.5 < 24 h
(slow hydrolysis)

i
(acid catalyzed) Slow release of boronic acid is feasible.

III alkynyl, electron-poor aryl > 24 h
(very slow hydrolysis)

i
(acid catalyzed)

Transmetalation in SM coupling proceeds via a direct 
mechanism rather than postsolvolysis

Table 1. Classification of trifluoroborate substrates according to hydrolytic haf-life t0.5.
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