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Problem: solvolysis of RBF,K is rather complex, Ar-F'f-X [PdOL,]

making the “slow-release” strategy not viable in some \%

ArX
cases.

This Work: factors that affect the hydrolysis of RBF;K reagents were investigated. Analysis of the
B-F bond allows a priori evaluation whether RBF,K will engender a “slow-" or “fast-release”.

2. Results and Discussion
2.1. Hydrolysis Mechanism of Aryltrifluoroborate 1a (R = p-F-C,H,) (Environmental Factor)
2.1.1. Hydrolitic Equilibrium and Effect of Glass (Reaction Vessel)

¢ The shape and size of the glass reaction vessel showed THF, 55 °C
P g Ar-BFsK 5 MH;0, Cs;CO; (3 eq) Ar-B(OH),

large effect in the hydrolytic half-life ¢,, of 1a under SM- 1a 2a
coupling conditions (Figure 2). The question is WHY?
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. Figure 2. (a) Hydrolytic half-life of 1a (8 mM) to 2a in
reaction vessel. reaction vessels A-G; magnetic stirring rate 500 rpm unless
noted. Determined by '°F NMR.

* Glass acting as a fluorophile can explain the effect of the

* Investigation of hydrolysis of 1a was carried out in a
PTFE tube. Without glass or base, the reaction reached a hydrolytic pre-equilibrium. On addition of
glass powder, the hydrolysis proceeded with simple pseudo-first-order kinetics, at a rate that was
directly proportional to the glass surface-area (Figure 3).




Scheme 2. (a) Exchange study between [1°B]-1a and [2H,]-2a under SM cross-coupling THF, 55 °C
conditions.l(b) Hydrolytic equilibrium of 1 with 2, via 3-5, and overall driving force of HF Ar-BF3K 5M H,0 Ar-B(OH),
sequestration by base or glass. 1a 2a
10 in PTFE reaction vessel
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b, 2-furyl f, c-Bu j, c-Hex n, CgHs g, p-CF3-CgH, data are approach to equilibrium and subsequent pseudo-
c, vinyl g, i-Pr k, b-styryl o, 1-naphthyl  r, m-NO,-CgH, first order decay after addition of borosilicate glass powder.
d, c-Pr h, benzyl |, p-MeO-CgH, p, 2-naphthyl s, 3,5-(CF3)-CgH3

2.1.2 Effect of Base: THF/Water Phase-Splitting and pH

* Inorganic bases induce a phase-splitting of water in the homogeneous THF/water medium,

although the system may present the visual aspect of a homogeneous medium.
=> Under SM coupling conditions, the majority of the base is present in the minor aqueous phase
(pH = 12) rather than in the bulk THF/H,O phase (pH = 9) (Figure 3a).

* In a pH single-phase basic medium,
the boronic acid is predominantly
present as ArB(OH);. In contrast, a
biphasic system maintains a relatively
pH the organic phase,
ensuring that a higher proportion of
ArB(OH),, the active transmetalating
agent,’ is present while facilitating the
generation of the key complex R-Pd-
OH (Figure 3b).

=> in situ generation of a biphasic
medium is benefic to the reaction.

* Although a base or glass (“HF-sink”),
is required to drive the hydrolysis to
completion, base

lower in

in the medium
strongly retards hydrolysis (Figures 3c
and 3d).
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Figure 3. (a) Phase-splitting of THF/H,O solution (10/1) under basic conditions. (b) SM
coupling in a biphasic system. (c) Hydrolysis of 1a under basic heterogeneous conditions
and the accompanying change in pH of the bulk phase. (d) Hydrolysis of 1a under different
base/buffer conditions.i: MOPS 50 and 100 mM ii: no buffer, iii: TRIS, iv: Et3N, v: i-Pro-NEt,

vi: DBU, vii: +-Bu-Py,

an acid-catalyzed hydrolytic equilibrium (acid-base paradox).

Conclusion in Section 1a: under the basic THF/H,O conditions, the base-mediated suppression of
solvolysis of 1a counts for the variability in the induction period and solvolytic decay. pH buffering
ability of the bulk phase depends on three processes:

(1) the rate of hydrolytic equilibrium of 1a, to liberate HF/KHF,
(i1) the rate of sequestration of the HF/KHF,
(iii)

<=depends on R
<= depends on vessel and base

the interfacial transfer rate of hydroxide or carbonate from the strongly basic minor
biphase into the bulk medium (the major biphase)

<= depends on mixing efficiency

(ii) and (iii) => Reaction environment is an important factor!
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Examp]es Scheme 3. (a) Effect of shape of reaction vessel in SM coupling. (b) Chemoselective SM coupling via
sonication. (Inset) Effect of 20s of sonication pulse on the hydrolysis of 1ain a heterogeneous media.
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base vessel (Scheme 3a).

3) Chemoselective Cross-Coupling: Highly efficient phase contact can be produced by sonication.
Under pulse sonication conditions, the boronic acid-derived cross-coupling product was generated
with high selectivity (Scheme 3b).

2.2. Hydrolysis of 1b—s (R Factor)
2.2.1. Hydrolytic Equilibrium in 1a—i and Base-Mediated Hydrolysis of 1a—s

 Range of k,,, in glass- or base-mediated hydrolysis of 1a—s was very large (> 10°).

obs

* Rationalization of the trend:

- slow hydrolysis: stabilization of RBF,K form by the s-character of C at the B—C bond, e.g, 1e

- fast hydrolysis: stabilization of RB(OH), form by m-donation (1¢,1d) or hyperconjugation (1g)

=> B-F bond length, an indicator of the ability of R to donate into the vacant p-orbital on B, should

correlate with the hydrolysis (k) of RBF;K.
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Figure 5. (a) Variation in B F bond length (Ar(B—F), by DTF) in RBF, (3a—i) with hydrolmc eqU|I|br|um (xo) for RBF3K (1a—i)— RB(OH), (2a-i). (b) Bond
elongation (Ar(B-F)) in RBF, (3a-s) versus log okass (57') for hydrolysis of 1a-s (8 mM). (c) Rates of base-mediated hydrolysis of 1 versus combined
resonance (g ) and steric (v) parameters. (d) Reagents classified by f, 5 in base.



e The calculated Ar(B-F) (variation of B-F bond length from BF; to RBF,, calculated by DFT)
correlated well with the experimentally determined hydrolytic equilibrium (x,) for 1a—i (Figure 5a).
Scheme 4. RBF;K hydrolysis by three different pathways.  Under SM-Couplng conditions, the PrediCtiOﬂ of the
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cat.
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acid-catalyzed hydrolysis rate became much more complex. Glass-
mediated hydrolyses correlated well with Ar(B-F)

R-B-F  R-B —>_ R-B +2HF above 1.5 pm (Figure 5b). Under basic conditions,
F ‘\(")/ F OH ¢ base : :
1 . 3 2 e log,okyps correlated  with  Ar(B-F), with
dir- H . . . .
b, Koon greotdissoqmtion  Koon A; sedvestaion | differentiation whether R is sp” or sp’.
YK F i) Ky K+ OH Y e The large range of k,, was explained by the
R oo o existence of two pathways for hydrolysis. If Ar(B—F)

Hydrolysis via pathway i results in retardation by base. Via 1 1 1
pathway ii is accelerated by base. Pathway iii only applies when 18 bCIOW apprOXImately 175 pm’ the R gI'OLlp 18

RBFK is sufficiently hydrophilic, insufficiently stabilizing in 3 to facilitate hydrolysis

through direct dissociation pathway (ii). Instead, the acid-catalyzed pathway (i) is dominant,
resulting in strong rate suppression on addition of base (Scheme 4).

e QOutlier 1c: R is hydrophilic enough so that the ionic RBF;K reagent partitions into the aqueous
minor biphase via pathway iii.

* However, a more general function than Ar(B—F) should be applied for better application. Can the
R group be treated as if it were a substituent on an aromatic ring (R-BF, = R-C,,)?

* Swain-Lupton resonance parameter (extension of Hammett equation) (Equation 1) correlated well
to Ar(B-F) , and thus to k2 (Figure 5c).

PR =1.3550,-1.190,,—0.03 (Equation 1)

=> Based on these results, trifluoroborates were classified in three groups according to R (Table

1).

Table 1. Classification of trifluoroborate substrates according to hydrolytic haf-life 5.

class R fos pathway misc
| alkyl, cycloalkyl, electron <1h ii Release of boronic acid is faster than its consumption.
rich-aryl, alkenyl (fast hydrolysis) (direct dissociation) Advantage is high stability of trifluoro boronate.

1h<fys<24h

(slow hydrrolysis) (acid caitalyzed) Slow release of boronic acid is feasible.

] simple aryl, benzyl, furyl

~ >24h i Transmetalation in SM coupling proceeds via a direct
it alkynyl, electron-poor aryl (very slow hydrolysis)  (acid catalyzed) mechanism rather than postsolvolysis

3. Conclusion

* Kinetics of hydrolysis of RBF;K (1) to RB(OH), (2) was investigated in the presence and absence
of base and glass in PTFE vessels for their application in Suzuki-Miyaura coupling.

* Reactions were found to proceed via acid catalysis or direct dissociation of KF.

* Hydrolysis rates (k,

obs

) correlated well with Ar(B—F) and ;. A priori evaluation can be made to
determine whether an RBF;K will undergo fast or slow hydrolysis.
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