Journal Club 2011/07/28

Selectivity and Mechanism of Hydrogen Atom Transfer by an Isolable Imidoiron(III) Complex

Ryan E. Cowley, Nathan A. Eckert, Sridhar Vaddadi, Travis M. Figg, Thomas R. Cundari,* Patrick L. Holland* *J. Am. Chem. Soc.* **2011**, 133, 9796–9811.

1. Introduction

1-1. Hydrogen atom transfer (HAT)

• HAT is an elementary chemical transformation that is utilized in many enzymatic systems such as oxidation by cytochrome P450, methane monooxygenase, ribonucleotide reductases, and so on.¹

 $A \cdot + H - B \longrightarrow A - H + \cdot B \quad (1)$

1-2. Metal-oxo copmplexes

• Extensive studies on HAT reactivity of M=O using *isolated* biomimetic M=O complexes (especially Fe=O).

• Linear correlation between rates of HAT and homolytic bond dissociation energy (BDE) of a C–H bond being broken (faster HAT with smaller BDE) is found regardless of the size of substrates in many cases.^{1,2}

$$[M] = O + H - R \longrightarrow [M] = O' + \cdot R \quad (2)$$

1-3. Metal-imido complexes

- Imido (NR²⁻) ligands are isoelectronic to oxo (O²⁻) ligands.
- More versatile than oxo complexes because steric and electronic properties can be tuned by N substituents.
- Only a few of *isolated* M=NR complexes that perform HAT reactions.

→ HAT reactivity of M=NR has not been well investigated in detail compared to M=O.

$$[M] = N + H - R \longrightarrow [M] - N + \cdot R \quad (3)$$

R' R'

1-4. Author's previous work

• Synthesis and characterization of the first isolated iron imido complex L^{Me}Fe(III)NAd (1) that performs intraand intermolecular HAT reactions.³

Scheme 1. Intramolecular HAT by 1

Scheme 2. Intermolecular HAT by 1

<u>1-5. This work</u>

• Authors performed one of the first systematic studies on the kinetics and thermodynamics of HAT reactivity of an imido complex with any late TM using L^{Me}Fe(III)NAd (1) by experimental and computational analysis.

2. Results and Discussion

2-1. HAT reaction of 1•^{*t*}BuPy

• While pyridine-free **1** is stable for several weeks at –45 °C, **1** showed HAT reactivity when ^{*t*}**BuPy** was added.

• 1•^tBuPy is far less stable and decomposes to 3•^tBuPy within a few hours at rt via intramolecular HAT (Scheme 1), and 1•^tBuPy rapidly reacts with 1,4-cyclohexadiene (CHD) via intermolecular HAT (Scheme 2).

2-2. Thermodynamics of pyridine coordination to 1

•	Equilibrium	constants	$K_{\rm eq}$	between	1	and	1• ^{<i>i</i>}	BuPy	were	obtained	by	Ή	NMR
til	ration in tolu	ene-d ₈ chai	ngin	g [^tBuPy]	0 (Table	1).						

• van't Hoff plot gave $\Delta H_{eq} = -7.0(2)$ kcal mol⁻¹, $\Delta S_{eq} = -20.6(6)$ cal mol⁻¹ K⁻¹, $\Delta G_{eq, 298} = -20.6(6)$ -0.9(3) kcal mol⁻¹ that indicated very weak coordination.

• More electron-rich pyridine bound more strongly to 1.

2-3. Kinetic studies of intramolecular HAT (Scheme 1)

• Conversion of 1 to $3 \cdot {}^{t}BuPy$ was monitored by ${}^{1}H$ NMR in C₆D₆ at 40 °C to obtain pseudo-first-order rate constants k_{obs} at various concentrations of ^t**BuPy** (Figure 1).

• k_{obs} increased as [**^tBuPy**] increased ($k_{obs} = 0$ when [**^tBuPy**] = 0)

 \rightarrow 1•^{*t*}BuPy (not 1) is the active species of HAT reaction.

• Saturation of k_{obs} from [^t**BuPy**] ≈ 0.2 M indicated rapid pre-equilibrium of ^t**BuPy** association prior to the rate determining HAT.

• k_{intra} was calculated by fitting Eq 4 to the data in Figure 1 for 4 pyridines having different para substituents.

$$-\frac{d[\mathbf{1} \cdot {}^{t}\mathbf{B}\mathbf{u}\mathbf{P}\mathbf{y}]}{dt} = k_{intra} \left(\frac{K_{eq}[\mathbf{1}]_{0}[{}^{t}\mathbf{B}\mathbf{u}\mathbf{P}\mathbf{y}]_{0}}{1 + K_{eq}[{}^{t}\mathbf{B}\mathbf{u}\mathbf{P}\mathbf{y}]_{0}}\right)$$
(4)

• Hammet plot of k_{intra} against σ_p showed $\rho = -0.77(4)$ (Figure 2).

 \rightarrow More electron-rich pyridine led to faster HAT.

2-4. Kinetic studies of intermolecular HAT (Scheme 2)

• Addition of hydrocarbons with weak C-H bonds prevented intramolecular HAT and caused intermolecular HAT.

• The reaction of $1 \cdot {}^{t}BuPy$ and CHD was monitored by ${}^{1}H$ NMR in toluene- d_{8} at -51 °C (no intra-HAT) to obtain pseudo-first-order rate constants k_{obs} at various concentrations of CHD and ^tBuPy (Figures 3 and 4).

• Linear dependence of k_{obs} on [CHD] suggested rate determining HAT (Figure 3).

• Saturation of k_{obs} was also observed at lower concentration of ['BuPy] due to higher K_{eq} at –51 °C (Table 1, Figure 4).

• k_{inter} was calculated from the slope of Figure 3 based on $k_{\text{obs}} = 2 k_{\text{inter}}$ [CHD] derived from Eq 5.

 $\frac{d[\mathbf{1} \cdot \mathbf{^{t}BuPy}]}{dt} = 2 k_{\text{inter}} [\text{CHD}] [\mathbf{1} \cdot \mathbf{^{t}BuPy}] \approx 2 k_{\text{inter}} [\text{CHD}] [\mathbf{1}]_0 = k_{\text{obs}} [\mathbf{1}]_0$ under saturation of [^tBuPy]

• Large KIE value $k_{\rm H}/k_{\rm D} = 105 \pm 28$ for the reaction with CHD and CHD- d_8 supported rate determining HAT.

Table 1.								
Pyridine	T (°C)	$K_{\rm eq}~({ m M}^{-1})$						
4- ^t BuPy	-51	250 ± 20						
4- ^t BuPy	0	15.4 ± 0.5						
4- ^t BuPy	40	2.5 ± 0.1						
4-Me ₂ NPy	40	4.7 ± 0.3						
4-PhPy	40	1.8 ± 0.1						
4-CF ₃ Py	40	0.8 ± 0.1						

Figure 3.

2-5. Kinetic studies of intermolecular HAT with other substrates

• Rates of inter-HAT with 1•^tBuPy did not correlate with homolytic BDE but were controlled by steric accessibility of a C-H bond to the imido nitrogen (entry 2 > 4 > 5, entry 2 > 3 > 6) partly due to steric hindrance from large imido N-substituent, β -diketiminate ligand, and added ^{*t*}**BuPy**.

 \rightarrow Rare example of a system where there is no strong k_{HAT} /homolytic BDE relationship.

• Higher k_{inter} of indene than DHN can be explained by the difference of heterolytic BDE $\frac{1}{a \text{ Calculated at B3LYP/6-311++G(d,p)}}$ (entries 1 and 3)

Table 2. Relationship between k_{inter} and BDEs

Entry	Substrate		k _{inter} (M ^{−1} s ^{−1}) at –51 °C	k _{rel}	Homolytic BDE ^a (kcal mol ⁻¹)	Heterolytic BDE ^a (kcal mol ⁻¹)
1			(1.9 ± 0.2) X 10 ⁻²	190	77	351
2	\bigcirc	CHD	(9.1 ± 0.9) X 10 ⁻³	90	71	375
3	\bigcirc	DHN	(1.56 ± 0.04) X 10 ⁻⁴	1.6	72	366
4	\mathbf{O}	Me ₂ CHD	$(1.00 \pm 0.05) \times 10^{-4}$	1	71	376
5	\mathbf{X}	Me ₄ CHD	0	0	71	375
6		DHA	0	0	74	359
7	\bigcirc		0	0	89	-

→ Proton-transfer character in TS of HAT, with positive charge on the metal fragment and negative charge on hydrocarbon (concerted but asynchronous proton transfer/electron transfer).

– Support (1): HAT in THF- d_8 containing electrolyte ["Bu₄N][BAr^F₄] was 1.6 times faster than HAT in THF- d_8 , which could be explained by the stabilization of charge built up in TS by polar environment.

- Support (2): More electron-rich pyridine led to faster HAT, which could be explained by increased Brønsted basicity of the imido nitrogen (2–3, Figure 2).

2-6. Computational studies

Table 3. Intermolecular HAT with 1 and 1•^tBuPy

	H/G kcal mol ⁻¹	Fe=N _{imido} Å	Spin density on N _{imido}	,	H/G kcal mol ⁻¹	Fe=N _{imido} Å	Spin density on $\mathrm{N}_{\mathrm{imido}}$
1 (Quartet)	0.0/0.0	1.70	0.26 e [−]	1• ^{<i>t</i>} BuPy (Quartet)	0.0/0.0	1.76	0.44 e ⁻
1 (Sextet)	11.7/11.9	1.75	1.07 e ⁻	1- ^t BuPy (Sextet)	2.4/0.2	1.77	1.08 e ⁻
[1 + CHD] [‡] (Quartet)	5.5/22.2	1.83	_	[1· ^t BuPy + CHD] [‡] (Quartet)	9.7/24.8	1.88	_
[1 + CHD] [‡] (Sextet)	12.0/27.9	1.90	-	[1• ^{<i>t</i>} BuPy + CHD] [‡] (Sextet)	13.3/28.1	1.90	-

• ONIOM(B3LYP/6-311++G(d,p):UFF) calculation was performed (Table 3).

• 1 has quartet ground state (12 kcal mol⁻¹ below sextet), which is consistent with EPR measurement and calculated bond distances and angles well agree with the crystal structure of **1** (e.g. Fe=N_{imido, X-ray}: 1.67 Å).

Figure 5. TS geometry of $1 \cdot {}^{t}BuPy + CHD$ at quartet

• 1•^{*t*}BuPy has still quartet ground state but the addition of ^{*t*}BuPy decreased the quartet/sextet energy gap and increased Fe= N_{imido} bond length (1.70 -> 1.76 Å).

• Although sextet of each complex 1 and 1•^{*t*}BuPy has higher spin density on imido nitrogen than quartet, that did not lead to a significant enhancement of HAT reactivity.

• TSs have longer Fe=N_{imido} bond (1.83–1.90 Å) than the complexes before TS (1.70–1.77 Å).

• Linear geometry of N---H---C could explain the large KIE value caused by H tunneling (Figure 5).

[•] Calculation failed to predict relative reactivity of 1 and 1•^{*t*}BuPy giving higher activation energy for 1•^{*t*}BuPy (Authors don't mention it in the main text).

2-7. Why is **1**•*^t***BuPy** much more reactive than **1**?

– Hypothesis (1): Coordination of ^{*t*}**BuPy** weakens Fe=N π -bond \rightarrow \bigcirc

• Computation predicted longer Fe=N_{imido} bond upon addition of ^{*t*}**BuPy** (Table 3).

• Longer Fe–N bond in $1 \cdot {}^{t}BuPy$ weakens π -donation of imido ligand into metal d-orbitals, resulting in higher basicity of imido nitrogen.

• Similar to the observation that increased basicity of the oxo ligand by the axial thiolate ligand led to faster HAT in iron–oxo complexes.⁴

– Hypothesis (2): Coordination of tBuPy allows two-state reactivity $\rightarrow \times$

• Some synthetic Fe=O complexes with intermediate spin are known to react via TS with high spin state, which has lower barrier due to enhanced d–d exchange interactions: Accessible high-spin TS can facilitate HAT.⁵

• TS energy for sextet is calculated to be higher (not significantly lower) than quartet (Table 3).

– Hypothesis (3): ^{*t*}**BuPy** binds to **2** more strongly than to **1** \rightarrow \bigcirc

Table 4. Activati	ion Parameters	Obtained by Eyr	Figure 6. Thermodynamic square by van't Hoff plot	
	∆ <i>H</i> [‡] kcal mol ⁻¹	ΔS^{\ddagger} cal mol ⁻¹ K ⁻¹	$\Delta G^{\ddagger}_{298}$ kcal mol ⁻¹	$1 \qquad \xrightarrow{\Delta H = x}{\Delta G = y} \qquad 2$
1. ^t BuPy intra HAT	+14.6(5)	-18(2)	+20(1)	t BuPy $\left \begin{array}{c} \Delta H = -7.0(2) \\ \Delta G = -0.9(2) \\ \end{array} \right \leq \Delta H = -14.5(6) \\ \Delta G = -5.6(0) \\ \end{array} \right {}^{t}$ BuPy
1 inter HAT	+12.2(3)	-33(2)	+22(1)	$1_{1}^{(B_1,D_2)} = -0.9(5) \qquad A = -3.0(5) \qquad 2_{1}^{(B_1,D_2)} = -0.0(5) \qquad 2_{1}^{(B_1,D_2)} = $
1. ^t BuPy inter HAT	+14.4(8)	-9(3)	+17(2)	$\Delta H = x - 7(1)$ $\Delta G = y - 5(1) (kcal mol^{-1})$

• Addition of ${}^{t}\mathbf{BuPy}$ resulted in $\Delta\Delta G^{\dagger}_{298} = -5(2)$ kcal mol⁻¹ (Table 4), which could be explained by thermodynamic driving force $\Delta\Delta G_{298} = -5(1)$ kcal mol⁻¹ (Figure 6).

 \rightarrow More stabilization of the product 2 by ^{*t*}BuPy is thermodynamic driving force for HAT.

3. Conclusion

• The first thorough study of the mechanism of HAT reactivity of an imidoiron complex.

• HAT is a rate determining step.

• HAT with proton-transfer character was proposed with proton-transfer slightly preceding electron transfer.

• Addition of ^{*t*}**BuPy** dramatically enhanced the HAT reactivity towards C–H bonds due to the increased basicity of the imido nitrogen and increased thermodynamic driving force to form the product **2**•^{*t*}**BuPy**.

• HAT reactivity was not controlled by homolytic BDE of C–H bonds but steric hindrance of a substrate and acidity of C–H bonds.

• Improvement of HAT reactivity by ligand design is in progress.

4. References

¹ Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004–5064.

² Bell, R. P. Proc. R. Soc. London, Ser. A **1936**, 154, 414–429.

³ a) Eckert, N. A.; Vaddadi, S.; Stoian, S.; Lachicotte, R. J.; Cundari, T. R.; Holland, P. L. *Angew. Chem., Int. Ed.* **2006**, *45*, 6868–6871. b) Cowlye, R. E.; DeYonker, N. J.; Eckert, N. A.; Cundari, T. R.; DeBeer, S.; Bill, E.; Ottenwaelder, X.; Flaschenriem, C. J.; Holland, P. L. *Inorg. Chem.* **2010**, *49*, 6172–6187.

⁴ a) Green, M. T.; Dawson, J. H.; Gray, H. B. *Science* **2004**, *304*, 1653–1656. b) Behan, R. K.; Hoffart, L. M.; Stone, K. L.; Krebs, C.; Green, M. T. J. Am. Chem. Soc. **2006**, *128*, 11471–11474.

⁵ Shaik, S.; Hirao, H.; Kumar, D. Acc. Chem. Res. 2007, 40, 532–542.