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1. Introduction 

1.1 Synthesis of Z-disubstituted alkenes 

 • Energy: E alkenes < Z alkenes  Z-selective alkene synthesis is difficult. 

 • Typical synthetic methods for Z-1,2-disubstituted alkenes 

(i) Wittig-type reaction – “Unstable ylides” only, non-catalytic, a lot of waste compounds. 

(ii) Catalytic alkyne hydrogenation – Toxic metal catalyst, Alkanes (byproduct) are difficult to separate. 

(iii) Cross-coupling reaction – Stereochemistry must be determined through the synthesis of substrates. 

  Alternative synthetic method is required.  

 

1.2 Previous Work 

 • Olefin metathesis reaction1 – One of the fundamental C–C double bond formation 

reaction, by using alkenes as the starting materials, which won Nobel Prize in 2005.  

 • Z-Selective olefin metathesis is a possible alternative. 

However, almost all of the reported 1,2-disubstituted alkene syntheses via olefin 

metathesis were E-selective because all of the elementary processes are reversible. 

 Kinetic control is necessary for the achievement of Z-selectivity. 

 • Highly Z-selective homo-coupling of terminal alkenes has been already achieved (Eq 1).2 
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– Bulky Ar group of 1 destablized the transition state for E-products by the steric factor (Figure 1).  

Kinetically controlled Z-alkene formation. 

M
N
R1

O
N
R2

R2
R

E-productive TS
was destabilized
by bulky ligands

Figure 1. Orgin of Stereoselectivity
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 – Stereoelectronic effects induced by the electron donor pyrrolide and acceptor monoaryloxide achevied the 

high activity in spite of the steric bulk. 

 – Formation of metal-methylidene species from ethylene promotes the back reaction, and the isomerization 

of the products  Low yield and stereoselectivity for some substrates  

 

1.3 This Work 

 • Development of a highly Z-selective cross-metathesis (CM) of terminal alkenes (Eq 2) – practical reaction 

for organic synthesis 

R1 + R2 1-type cat. R2

R1 + R1

R1 + R2

R2+

homo-coupling products

(2)

 
 – Z-selectivity is expected to be accomplishable by the use of 1-like catalyst. 

 – Challenges (i) Suppress homo-coupling reaction (ii) Suppress back reaction 

 

2. Results and Discussion 

 2.1 Z-Selective CM of enol ethers (Eq 3) 
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 • Use enol ethers as the starting materials  (i) Stabilizing enol ether derived alkylidenes 

thermodynamically (ii) Homo-coupling of enol ether is electronically disfavored. 

 • Use excess amount of enol ethers  (i) Further promote the formation of enol ether derived alkylidene. 

(ii) Suppress the reaction of the coupling product with Mo-methylidene. 

 Highly selective and efficient synthesis of (Z)-alkenes from enol ether was achieved.  

 • This reaction was applied to the synthesis of C18 (plasm) – 16:0 (PC) (8), an anti-oxidant plasmalogen 

phospholipid, which was previously synthesized by using catalytic alkyne hydrogenation, and whose 

(E)-isomer is less active3 (Scheme 1, 5 + 6 → 7).  

  – Enol ether 5, synthesized from commercially available 3, is valuable than aliphatic alkene 6.  For a 

large-scale synthesis, use of excess amount of 5 (Table 1, entry 1) was not practical.  Reduction of the 

loading of 5 is required.  

   -> Use of 1.0 equivalent 5 (entry 2)  Homo-coupling from 6 and ethylene formation became 

problematic (lowered the yield and stereoselectivity).  

   -> Perform reaction at reduced pressure (entry 3) achieved high yield and selectivity.  successful 

removal of ethylene from the system, and suppression of the formation of Mo-methylidene species.  
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   -> Use excess amount of inexpensive alkene 6 (Table 1, entry 4)  Yield was improved because the 

homo-coupling was not taken into account under these conditions. 
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Scheme 1. Synthesis of C18 (plasm) – 16:0 (PC) by Using CM Reaction
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2.2 Z-Selective CM of allylic amides (Eq 4) 

 • Use allylic amides as the starting materials would be useful because a lot of biologically active molecules 

bear C–N bonds, and allylic C–N bond can be functionalized in a variety of ways.  

 • Homo-coupling of allylic amides can undergo.  To suppress the homo-coupling, excess amount of 

aliphatic alkenes were employed, and the reaction was performed under vacuum (the same strategy as the 

large-scale synthesis of compound 7  
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Table 1. Effect of Reduced Pressure on Efficiency and Z-selectivity

entry 5:6 yield (%)
9solvent pressure Z:E

1
2
3
4

5:1 benzene 1 atm 85 >98:2
1:1 benzene 1 atm 47 91.5:8.5
1:1 benzene 1 Torr 78 97:3
1:2 decalin 1 Torr 88 97:3
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 • Adamantylimido complex 10 was the most active catalyst for this conversion. Catalyst 2 also showed good 

stereoselectivity, but did not show good efficiency (35% yield).  Less hindered 10 seemed to readily 

promote the conversion from relatively hindered allylic amides. 

 • The use of excess amount of aliphatic alkenes, and the performing the reaction under vacuum conditions, 

good reactivity and stereoselectivity was achieved.  

 • Even from less hindered allylic amides (R3 = H), which are more prone to homo-coupling, the desired 

products were obtained in relatively good yield (75–87%), although the stereoselectivity became lower. 

 • This reaction from allylic amide was also applied to the synthesis of a natural product, KRN7000 (16, an 

anti-tumor agent). Diastereoselectivity was derived from the Z-alkene 14.  
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3. Conclusions 

 • Highly Z-selective CM from enol ethers and allylic amides was developed. 

 • These reactions could be applied to the key step for the natural product syntheses. 

 • Use of adequate equivalent of starting materials and/or reaction in vacuum conditions suppressed the 

undesirable homo-coupling reaction and the formation of Mo-methylidene species, and achieved high yield.  
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