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“Ultrafast image cytometer for cancer cell detection during
operation ”

Often, cancer recurs after extraction of the original tumor,
due to cancer metastasis. To prevent this, doctors perform
biopsy on lymph nodes close to the tumor and look for cancer
cells that cause metastasis. However, these cancer cells are
overlooked for they are buried in millions of lymph and immune
cells. Furthermore, the inspection is performed after operation,
and even if cancer cells are found, patients must have another
operation, which consumes both the patient’s vitality and
medical expense.

In order to detect the rare cancer cells in lymph nodes during
operation, we developed an ultrafast image-based flow
cytometer that can detect rare cells according to their
morphology. Using an ultrafast imaging technique called
STEAM (serial time-encoded amplified microscopy) [1], we
integrated it with microfluidic technology to construct a
STEAM flow cytometer, which can capture images of cells in a
high-speed flow of 8 m/s, corresponding to a record throughput
of 200,000 cells/s [2]. With this flow cytometer, we aim to
detect a single cancer cell out of a million white blood cells
inside lymph nodes in less than a minute and perform several
diagnosis during operation time (~30 min).
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Fig. 1 Schematic of STEAM flow cytometer.

Unlike the previous STEAM flow cytometer [2], we used an
800 nm femtosecond laser source for better optical resolution to
capture the morphology of cells in more detail. The simplified
optical setup is as in figure 1. First, we stretched the pulse
temporally to map the spectrum of the pulse in the temporal
domain. Then we used a diffraction grating to map the spectrum
in 1D space, and targeted it to the cells flowing in the
microfluidic device using an objective lens. The transmitted
pulse was detected as a temporal spectrum using a high-speed
photodetector and a digitizer. Finally, the repeated pulses were
aligned in 2D to obtain images of cells.
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Fig. 2 Image of mice myeloma cells in 0.5 m/s flow.

With this setup, we were able to capture images of mice
myeloma cells (about 15 pum in diameter) in a high-speed flow
of 0.5 m/s (Figure 2). The speed limitation comes from the
durability of the homemade microfluidic device. By improving
this, it is possible to obtain images of cells at a flow of over 10
m/s. Furthermore, by obtaining images of several hundred cells,
we were able to construct a size histogram according to the
cross section (Figure 3). Therefore, with this technique, we are
able to classify cells according to their size, which is a key
factor to distinguish cancer cells from other cells.
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Fig. 3 Size histogram of 328 mice myeloma cells.

[1] Nature, 458, 1145 (2009).
[2] PNAS, 109, 11630 (2012).

With our STEAM flow cytometer, we were able to obtain
images of several hundred cells in a high-speed flow. By
integrating a field-programmable gate array (FPGA), we plan to
process the image in real time in order to obtain images from
millions of cells in a minute and simultaneously classify them
according to their size and morphology. Once we are able to
screen a large number of cells, we will perform clinical
experiments, first with blood and then with lymph nodes from
cancer patients.
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